Spaces:
Runtime error
Runtime error
| from __future__ import print_function, unicode_literals, absolute_import, division | |
| from six.moves import range, zip, map, reduce, filter | |
| import collections | |
| import warnings | |
| import numpy as np | |
| def get_coord(shape, size, margin): | |
| n_tiles_i = int(np.ceil((shape[2]-size)/float(size-2*margin))) | |
| n_tiles_j = int(np.ceil((shape[1]-size)/float(size-2*margin))) | |
| for i in range(n_tiles_i+1): | |
| src_start_i = i*(size-2*margin) if i<n_tiles_i else (shape[2]-size) | |
| src_end_i = src_start_i+size | |
| left_i = margin if i>0 else 0 | |
| right_i = margin if i<n_tiles_i else 0 | |
| for j in range(n_tiles_j+1): | |
| src_start_j = j*(size-2*margin) if j<n_tiles_j else (shape[1]-size) | |
| src_end_j = src_start_j+size | |
| left_j = margin if j>0 else 0 | |
| right_j = margin if j<n_tiles_j else 0 | |
| src_s = (slice(None, None), | |
| slice(src_start_j, src_end_j), | |
| slice(src_start_i, src_end_i)) | |
| trg_s = (slice(None, None), | |
| slice(src_start_j+left_j, src_end_j-right_j), | |
| slice(src_start_i+left_i, src_end_i-right_i)) | |
| mrg_s = (slice(None, None), | |
| slice(left_j, -right_j if right_j else None), | |
| slice(left_i, -right_i if right_i else None)) | |
| yield src_s, trg_s, mrg_s | |
| # Below implementation of prediction utils inherited from CARE: https://github.com/CSBDeep/CSBDeep | |
| # Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy. Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas Müller, Alexandr Dibrov, Akanksha Jain, Benjamin Wilhelm, Deborah Schmidt, Coleman Broaddus, Siân Culley, Mauricio Rocha-Martins, Fabián Segovia-Miranda, Caren Norden, Ricardo Henriques, Marino Zerial, Michele Solimena, Jochen Rink, Pavel Tomancak, Loic Royer, Florian Jug, and Eugene W. Myers. Nature Methods 15.12 (2018): 1090–1097. | |
| def _raise(e): | |
| raise e | |
| def consume(iterator): | |
| collections.deque(iterator, maxlen=0) | |
| def axes_check_and_normalize(axes,length=None,disallowed=None,return_allowed=False): | |
| """ | |
| S(ample), T(ime), C(hannel), Z, Y, X | |
| """ | |
| allowed = 'STCZYX' | |
| axes is not None or _raise(ValueError('axis cannot be None.')) | |
| axes = str(axes).upper() | |
| consume(a in allowed or _raise(ValueError("invalid axis '%s', must be one of %s."%(a,list(allowed)))) for a in axes) | |
| disallowed is None or consume(a not in disallowed or _raise(ValueError("disallowed axis '%s'."%a)) for a in axes) | |
| consume(axes.count(a)==1 or _raise(ValueError("axis '%s' occurs more than once."%a)) for a in axes) | |
| length is None or len(axes)==length or _raise(ValueError('axes (%s) must be of length %d.' % (axes,length))) | |
| return (axes,allowed) if return_allowed else axes | |
| def axes_dict(axes): | |
| """ | |
| from axes string to dict | |
| """ | |
| axes, allowed = axes_check_and_normalize(axes,return_allowed=True) | |
| return { a: None if axes.find(a) == -1 else axes.find(a) for a in allowed } | |
| def normalize_mi_ma(x, mi, ma, clip=False, eps=1e-20, dtype=np.float32): | |
| if dtype is not None: | |
| x = x.astype(dtype,copy=False) | |
| mi = dtype(mi) if np.isscalar(mi) else mi.astype(dtype,copy=False) | |
| ma = dtype(ma) if np.isscalar(ma) else ma.astype(dtype,copy=False) | |
| eps = dtype(eps) | |
| try: | |
| import numexpr | |
| x = numexpr.evaluate("(x - mi) / ( ma - mi + eps )") | |
| except ImportError: | |
| x = (x - mi) / ( ma - mi + eps ) | |
| if clip: | |
| x = np.clip(x,0,1) | |
| return x | |
| class PercentileNormalizer(object): | |
| def __init__(self, pmin=2, pmax=99.8, do_after=True, dtype=np.float32, **kwargs): | |
| (np.isscalar(pmin) and np.isscalar(pmax) and 0 <= pmin < pmax <= 100) or _raise(ValueError()) | |
| self.pmin = pmin | |
| self.pmax = pmax | |
| self._do_after = do_after | |
| self.dtype = dtype | |
| self.kwargs = kwargs | |
| def before(self, img, axes): | |
| len(axes) == img.ndim or _raise(ValueError()) | |
| channel = axes_dict(axes)['C'] | |
| axes = None if channel is None else tuple((d for d in range(img.ndim) if d != channel)) | |
| self.mi = np.percentile(img,self.pmin,axis=axes,keepdims=True).astype(self.dtype,copy=False) | |
| self.ma = np.percentile(img,self.pmax,axis=axes,keepdims=True).astype(self.dtype,copy=False) | |
| return normalize_mi_ma(img, self.mi, self.ma, dtype=self.dtype, **self.kwargs) | |
| def after(self, img): | |
| self.do_after or _raise(ValueError()) | |
| alpha = self.ma - self.mi | |
| beta = self.mi | |
| return ( alpha*img+beta ).astype(self.dtype,copy=False) | |
| def do_after(self): | |
| return self._do_after | |
| class PadAndCropResizer(object): | |
| def __init__(self, mode='reflect', **kwargs): | |
| self.mode = mode | |
| self.kwargs = kwargs | |
| def _normalize_exclude(self, exclude, n_dim): | |
| """Return normalized list of excluded axes.""" | |
| if exclude is None: | |
| return [] | |
| exclude_list = [exclude] if np.isscalar(exclude) else list(exclude) | |
| exclude_list = [d%n_dim for d in exclude_list] | |
| len(exclude_list) == len(np.unique(exclude_list)) or _raise(ValueError()) | |
| all(( isinstance(d,int) and 0<=d<n_dim for d in exclude_list )) or _raise(ValueError()) | |
| return exclude_list | |
| def before(self, x, div_n, exclude): | |
| def _split(v): | |
| a = v // 2 | |
| return a, v-a | |
| exclude = self._normalize_exclude(exclude, x.ndim) | |
| self.pad = [_split((div_n-s%div_n)%div_n) if (i not in exclude) else (0,0) for i,s in enumerate(x.shape)] | |
| x_pad = np.pad(x, self.pad, mode=self.mode, **self.kwargs) | |
| for i in exclude: | |
| del self.pad[i] | |
| return x_pad | |
| def after(self, x, exclude): | |
| pads = self.pad[:len(x.shape)] | |
| crop = [slice(p[0], -p[1] if p[1]>0 else None) for p in self.pad] | |
| for i in self._normalize_exclude(exclude, x.ndim): | |
| crop.insert(i,slice(None)) | |
| len(crop) == x.ndim or _raise(ValueError()) | |
| return x[tuple(crop)] | |