Spaces:
Running
on
Zero
Running
on
Zero
kxhit
commited on
Commit
•
bb54316
1
Parent(s):
9c3b9db
move sam to main
Browse files- app.py +20 -2
- dust3r/utils/image.py +1 -16
app.py
CHANGED
@@ -72,6 +72,8 @@ from diffusers import DDIMScheduler
|
|
72 |
from dataset import get_pose
|
73 |
from CN_encoder import CN_encoder
|
74 |
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
|
|
|
|
|
75 |
|
76 |
pretrained_model_name_or_path = "kxic/EscherNet_demo"
|
77 |
resolution = 256
|
@@ -115,6 +117,22 @@ pipeline.enable_vae_slicing()
|
|
115 |
# pipeline.enable_xformers_memory_efficient_attention()
|
116 |
|
117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
@spaces.GPU(duration=120)
|
119 |
def run_eschernet(eschernet_input_dict, sample_steps, sample_seed, nvs_num, nvs_mode):
|
120 |
# set the random seed
|
@@ -330,7 +348,7 @@ def get_reconstructed_scene(filelist, schedule, niter, min_conf_thr,
|
|
330 |
if os.path.exists(outdir):
|
331 |
shutil.rmtree(outdir)
|
332 |
os.makedirs(outdir, exist_ok=True)
|
333 |
-
imgs, imgs_rgba = load_images(filelist, size=image_size, verbose=not silent, do_remove_background=True)
|
334 |
if len(imgs) == 1:
|
335 |
imgs = [imgs[0], copy.deepcopy(imgs[0])]
|
336 |
imgs[1]['idx'] = 1
|
@@ -544,7 +562,7 @@ Image views are treated as tokens and the camera pose is encoded by <b>CaPE (Cam
|
|
544 |
|
545 |
<h4><b>Tips:</b></h4>
|
546 |
|
547 |
-
- Our model can take <b>any number input images</b>. The more images you provide, the better the results.
|
548 |
|
549 |
- Our model can generate <b>any number and any pose</b> novel views. You can specify the number of views you want to generate. In this demo, we set novel views on an <b>archemedian spiral</b> for simplicity.
|
550 |
|
|
|
72 |
from dataset import get_pose
|
73 |
from CN_encoder import CN_encoder
|
74 |
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
|
75 |
+
from segment_anything import sam_model_registry, SamPredictor
|
76 |
+
import rembg
|
77 |
|
78 |
pretrained_model_name_or_path = "kxic/EscherNet_demo"
|
79 |
resolution = 256
|
|
|
117 |
# pipeline.enable_xformers_memory_efficient_attention()
|
118 |
|
119 |
|
120 |
+
#### object segmentation
|
121 |
+
def sam_init():
|
122 |
+
sam_checkpoint = os.path.join("./sam_pt/sam_vit_h_4b8939.pth")
|
123 |
+
if os.path.exists(sam_checkpoint) is False:
|
124 |
+
os.system("wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -P ./sam_pt/")
|
125 |
+
model_type = "vit_h"
|
126 |
+
|
127 |
+
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=device)
|
128 |
+
predictor = SamPredictor(sam)
|
129 |
+
return predictor
|
130 |
+
|
131 |
+
rembg_session = rembg.new_session()
|
132 |
+
predictor = sam_init()
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
@spaces.GPU(duration=120)
|
137 |
def run_eschernet(eschernet_input_dict, sample_steps, sample_seed, nvs_num, nvs_mode):
|
138 |
# set the random seed
|
|
|
348 |
if os.path.exists(outdir):
|
349 |
shutil.rmtree(outdir)
|
350 |
os.makedirs(outdir, exist_ok=True)
|
351 |
+
imgs, imgs_rgba = load_images(filelist, size=image_size, verbose=not silent, do_remove_background=True, rembg_session=rembg_session, predictor=predictor)
|
352 |
if len(imgs) == 1:
|
353 |
imgs = [imgs[0], copy.deepcopy(imgs[0])]
|
354 |
imgs[1]['idx'] = 1
|
|
|
562 |
|
563 |
<h4><b>Tips:</b></h4>
|
564 |
|
565 |
+
- Our model can take <b>any number input images</b>. The more images you provide (>=3 for this demo), the better the results.
|
566 |
|
567 |
- Our model can generate <b>any number and any pose</b> novel views. You can specify the number of views you want to generate. In this demo, we set novel views on an <b>archemedian spiral</b> for simplicity.
|
568 |
|
dust3r/utils/image.py
CHANGED
@@ -12,23 +12,9 @@ from PIL.ImageOps import exif_transpose
|
|
12 |
import torchvision.transforms as tvf
|
13 |
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
|
14 |
import cv2 # noqa
|
15 |
-
|
16 |
-
import rembg
|
17 |
-
rembg_session = rembg.new_session()
|
18 |
-
|
19 |
import time
|
20 |
from PIL import Image
|
21 |
from rembg import remove
|
22 |
-
from segment_anything import sam_model_registry, SamPredictor
|
23 |
-
def sam_init():
|
24 |
-
sam_checkpoint = os.path.join("./sam_pt/sam_vit_h_4b8939.pth")
|
25 |
-
if os.path.exists(sam_checkpoint) is False:
|
26 |
-
os.system("wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -P ./sam_pt/")
|
27 |
-
model_type = "vit_h"
|
28 |
-
|
29 |
-
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{0 if torch.cuda.is_available() else 'cpu'}")
|
30 |
-
predictor = SamPredictor(sam)
|
31 |
-
return predictor
|
32 |
|
33 |
def sam_segment(predictor, input_image, *bbox_coords):
|
34 |
bbox = np.array(bbox_coords)
|
@@ -50,7 +36,6 @@ def sam_segment(predictor, input_image, *bbox_coords):
|
|
50 |
torch.cuda.empty_cache()
|
51 |
return Image.fromarray(out_image_bbox, mode='RGBA')
|
52 |
|
53 |
-
predictor = sam_init()
|
54 |
|
55 |
try:
|
56 |
from pillow_heif import register_heif_opener # noqa
|
@@ -103,7 +88,7 @@ def _resize_pil_image(img, long_edge_size):
|
|
103 |
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
|
104 |
return img.resize(new_size, interp)
|
105 |
|
106 |
-
def load_images(folder_or_list, size, square_ok=False, verbose=True, do_remove_background=True, rembg_session=None):
|
107 |
""" open and convert all images in a list or folder to proper input format for DUSt3R
|
108 |
"""
|
109 |
if isinstance(folder_or_list, str):
|
|
|
12 |
import torchvision.transforms as tvf
|
13 |
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
|
14 |
import cv2 # noqa
|
|
|
|
|
|
|
|
|
15 |
import time
|
16 |
from PIL import Image
|
17 |
from rembg import remove
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def sam_segment(predictor, input_image, *bbox_coords):
|
20 |
bbox = np.array(bbox_coords)
|
|
|
36 |
torch.cuda.empty_cache()
|
37 |
return Image.fromarray(out_image_bbox, mode='RGBA')
|
38 |
|
|
|
39 |
|
40 |
try:
|
41 |
from pillow_heif import register_heif_opener # noqa
|
|
|
88 |
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
|
89 |
return img.resize(new_size, interp)
|
90 |
|
91 |
+
def load_images(folder_or_list, size, square_ok=False, verbose=True, do_remove_background=True, rembg_session=None, predictor=None):
|
92 |
""" open and convert all images in a list or folder to proper input format for DUSt3R
|
93 |
"""
|
94 |
if isinstance(folder_or_list, str):
|