Spaces:
Running
on
Zero
Running
on
Zero
kxhit
commited on
Commit
•
49f0812
1
Parent(s):
5ca3a35
debug mini
Browse files
app.py
CHANGED
@@ -268,6 +268,9 @@ from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_
|
|
268 |
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
|
269 |
import math
|
270 |
|
|
|
|
|
|
|
271 |
# @spaces.GPU(duration=120)
|
272 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
273 |
cam_color=None, as_pointcloud=False,
|
@@ -368,39 +371,26 @@ def get_reconstructed_scene(filelist, schedule, niter, min_conf_thr,
|
|
368 |
if os.path.exists(outdir):
|
369 |
shutil.rmtree(outdir)
|
370 |
os.makedirs(outdir, exist_ok=True)
|
371 |
-
imgs, imgs_rgba = load_images(filelist, size=image_size, verbose=not silent, do_remove_background=True, rembg_session=rembg_session, predictor=predictor)
|
372 |
-
if len(imgs) == 1:
|
373 |
-
imgs = [imgs[0], copy.deepcopy(imgs[0])]
|
374 |
-
imgs[1]['idx'] = 1
|
375 |
-
if scenegraph_type == "swin":
|
376 |
-
scenegraph_type = scenegraph_type + "-" + str(winsize)
|
377 |
-
elif scenegraph_type == "oneref":
|
378 |
-
scenegraph_type = scenegraph_type + "-" + str(refid)
|
379 |
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
386 |
|
387 |
-
if mode == GlobalAlignerMode.PointCloudOptimizer:
|
388 |
-
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr)
|
389 |
|
390 |
-
# outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
|
391 |
-
# clean_depth, transparent_cams, cam_size, same_focals=same_focals)
|
392 |
|
393 |
-
#
|
394 |
-
# depth is normalized with the max value for all images
|
395 |
-
# we apply the jet colormap on the confidence maps
|
396 |
-
rgbimg = scene.imgs
|
397 |
-
# depths = to_numpy(scene.get_depthmaps())
|
398 |
-
# confs = to_numpy([c for c in scene.im_conf])
|
399 |
-
# cmap = pl.get_cmap('jet')
|
400 |
-
# depths_max = max([d.max() for d in depths])
|
401 |
-
# depths = [d / depths_max for d in depths]
|
402 |
-
# confs_max = max([d.max() for d in confs])
|
403 |
-
# confs = [cmap(d / confs_max) for d in confs]
|
404 |
|
405 |
imgs = []
|
406 |
rgbaimg = []
|
@@ -419,101 +409,98 @@ def get_reconstructed_scene(filelist, schedule, niter, min_conf_thr,
|
|
419 |
rgbaimg = np.array(rgbaimg)
|
420 |
|
421 |
# for eschernet
|
422 |
-
#
|
423 |
-
|
424 |
-
#
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
#
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
# get
|
441 |
-
#
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
#
|
446 |
-
|
447 |
-
#
|
448 |
-
|
449 |
-
|
450 |
-
#
|
451 |
-
|
452 |
-
# #
|
453 |
-
#
|
454 |
-
#
|
455 |
-
#
|
456 |
-
#
|
457 |
-
#
|
458 |
-
|
459 |
-
# #
|
460 |
-
#
|
461 |
-
# #
|
462 |
-
#
|
463 |
-
#
|
|
|
|
|
|
|
464 |
# rot = Rotation.from_rotvec(rot_angle * rot_axis)
|
465 |
# z_up = np.eye(4)
|
466 |
# z_up[:3, :3] = rot.as_matrix()
|
467 |
-
|
468 |
-
#
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
#
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
#
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
#
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
#
|
494 |
-
|
495 |
-
scene.vis_pts3d = pts3d.copy()
|
496 |
-
|
497 |
-
# TODO save cams2world and rgbimg to each file, file name "000.npy", "001.npy", ... and "000.png", "001.png", ...
|
498 |
-
for i, (img, img_rgba, pose) in enumerate(zip(rgbimg, rgbaimg, cams2world)):
|
499 |
-
np.save(os.path.join(outdir, f"{i:03d}.npy"), pose)
|
500 |
-
pl.imsave(os.path.join(outdir, f"{i:03d}.png"), img)
|
501 |
-
pl.imsave(os.path.join(outdir, f"{i:03d}_rgba.png"), img_rgba)
|
502 |
-
# np.save(os.path.join(outdir, f"{i:03d}_focal.npy"), to_numpy(focal))
|
503 |
# save the min/max radius of camera
|
504 |
radii = np.linalg.norm(np.linalg.inv(cams2world)[..., :3, 3])
|
505 |
-
np.save(os.path.join(outdir, "radii.npy"), radii)
|
506 |
|
507 |
eschernet_input = {"poses": cams2world,
|
508 |
"radii": radii,
|
509 |
"imgs": rgbaimg}
|
510 |
print("got eschernet input")
|
511 |
-
outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
|
512 |
-
|
513 |
|
514 |
return scene, outfile, imgs, eschernet_input
|
515 |
|
516 |
|
|
|
|
|
517 |
def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type):
|
518 |
num_files = len(inputfiles) if inputfiles is not None else 1
|
519 |
max_winsize = max(1, math.ceil((num_files - 1) / 2))
|
|
|
268 |
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
|
269 |
import math
|
270 |
|
271 |
+
from mini_dust3r.api import OptimizedResult, inferece_dust3r, log_optimized_result
|
272 |
+
from mini_dust3r.model import AsymmetricCroCo3DStereo
|
273 |
+
|
274 |
# @spaces.GPU(duration=120)
|
275 |
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
|
276 |
cam_color=None, as_pointcloud=False,
|
|
|
371 |
if os.path.exists(outdir):
|
372 |
shutil.rmtree(outdir)
|
373 |
os.makedirs(outdir, exist_ok=True)
|
374 |
+
# imgs, imgs_rgba = load_images(filelist, size=image_size, verbose=not silent, do_remove_background=True, rembg_session=rembg_session, predictor=predictor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
|
376 |
+
optimized_results: OptimizedResult = inferece_dust3r(
|
377 |
+
image_dir_or_list=filelist,
|
378 |
+
model=model,
|
379 |
+
device=device,
|
380 |
+
batch_size=1,
|
381 |
+
)
|
382 |
+
rgbimg = optimized_results.rgb_hw3_list
|
383 |
+
imgs_rgba = rgbimg
|
384 |
+
cams2world = optimized_results.world_T_cam_b44
|
385 |
+
pts3d = optimized_results.point_cloud
|
386 |
+
pts_obj = pts3d
|
387 |
+
outfile = os.path.join(outdir, 'scene.glb')
|
388 |
+
# save point cloud trimesh.PointCloud to .ply
|
389 |
+
pts3d.export(os.path.join(outdir, 'scene.glb'))
|
390 |
|
|
|
|
|
391 |
|
|
|
|
|
392 |
|
393 |
+
# rgbimg = to_numpy(scene.imgs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
394 |
|
395 |
imgs = []
|
396 |
rgbaimg = []
|
|
|
409 |
rgbaimg = np.array(rgbaimg)
|
410 |
|
411 |
# for eschernet
|
412 |
+
# cams2world = to_numpy(scene.get_im_poses().cpu())
|
413 |
+
# pts3d = to_numpy(scene.get_pts3d())
|
414 |
+
# scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
|
415 |
+
# msk = to_numpy(scene.get_masks())
|
416 |
+
# obj_mask = rgbaimg[..., 3] > 0
|
417 |
+
|
418 |
+
# # TODO set global coordinate system at the center of the scene, z-axis is up
|
419 |
+
# # pts = np.concatenate([p[m] for p, m in zip(pts3d, msk)]).reshape(-1, 3)
|
420 |
+
# # pts_obj = np.concatenate([p[m&obj_m] for p, m, obj_m in zip(pts3d, msk, obj_mask)]).reshape(-1, 3)
|
421 |
+
# centroid = np.mean(pts_obj, axis=0) # obj center
|
422 |
+
# obj2world = np.eye(4)
|
423 |
+
# obj2world[:3, 3] = -centroid # T_wc
|
424 |
+
#
|
425 |
+
# # get z_up vector
|
426 |
+
# # TODO fit a plane and get the normal vector
|
427 |
+
# pcd = o3d.geometry.PointCloud()
|
428 |
+
# pcd.points = o3d.utility.Vector3dVector(pts)
|
429 |
+
# plane_model, inliers = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=1000)
|
430 |
+
# # get the normalised normal vector dim = 3
|
431 |
+
# normal = plane_model[:3] / np.linalg.norm(plane_model[:3])
|
432 |
+
# # the normal direction should be pointing up
|
433 |
+
# if normal[1] < 0:
|
434 |
+
# normal = -normal
|
435 |
+
# # print("normal", normal)
|
436 |
+
#
|
437 |
+
# # # TODO z-up 180
|
438 |
+
# # z_up = np.array([[1,0,0,0],
|
439 |
+
# # [0,-1,0,0],
|
440 |
+
# # [0,0,-1,0],
|
441 |
+
# # [0,0,0,1]])
|
442 |
+
# # obj2world = z_up @ obj2world
|
443 |
+
#
|
444 |
+
# # # avg the y
|
445 |
+
# # z_up_avg = cams2world[:,:3,3].sum(0) / np.linalg.norm(cams2world[:,:3,3].sum(0), axis=-1) # average direction in cam coordinate
|
446 |
+
# # # import pdb; pdb.set_trace()
|
447 |
+
# # rot_axis = np.cross(np.array([0, 0, 1]), z_up_avg)
|
448 |
+
# # rot_angle = np.arccos(np.dot(np.array([0, 0, 1]), z_up_avg) / (np.linalg.norm(z_up_avg) + 1e-6))
|
449 |
+
# # rot = Rotation.from_rotvec(rot_angle * rot_axis)
|
450 |
+
# # z_up = np.eye(4)
|
451 |
+
# # z_up[:3, :3] = rot.as_matrix()
|
452 |
+
#
|
453 |
+
# # get the rotation matrix from normal to z-axis
|
454 |
+
# z_axis = np.array([0, 0, 1])
|
455 |
+
# rot_axis = np.cross(normal, z_axis)
|
456 |
+
# rot_angle = np.arccos(np.dot(normal, z_axis) / (np.linalg.norm(normal) + 1e-6))
|
457 |
# rot = Rotation.from_rotvec(rot_angle * rot_axis)
|
458 |
# z_up = np.eye(4)
|
459 |
# z_up[:3, :3] = rot.as_matrix()
|
460 |
+
# obj2world = z_up @ obj2world
|
461 |
+
# # flip 180
|
462 |
+
# flip_rot = np.array([[1, 0, 0, 0],
|
463 |
+
# [0, -1, 0, 0],
|
464 |
+
# [0, 0, -1, 0],
|
465 |
+
# [0, 0, 0, 1]])
|
466 |
+
# obj2world = flip_rot @ obj2world
|
467 |
+
#
|
468 |
+
# # get new cams2obj
|
469 |
+
# cams2obj = []
|
470 |
+
# for i, cam2world in enumerate(cams2world):
|
471 |
+
# cams2obj.append(obj2world @ cam2world)
|
472 |
+
# # TODO transform pts3d to the new coordinate system
|
473 |
+
# for i, pts in enumerate(pts3d):
|
474 |
+
# pts3d[i] = (obj2world @ np.concatenate([pts, np.ones_like(pts)[..., :1]], axis=-1).transpose(2, 0, 1).reshape(4,
|
475 |
+
# -1)) \
|
476 |
+
# .reshape(4, pts.shape[0], pts.shape[1]).transpose(1, 2, 0)[..., :3]
|
477 |
+
# cams2world = np.array(cams2obj)
|
478 |
+
# # TODO rewrite hack
|
479 |
+
# scene.vis_poses = cams2world.copy()
|
480 |
+
# scene.vis_pts3d = pts3d.copy()
|
481 |
+
|
482 |
+
# # TODO save cams2world and rgbimg to each file, file name "000.npy", "001.npy", ... and "000.png", "001.png", ...
|
483 |
+
# for i, (img, img_rgba, pose) in enumerate(zip(rgbimg, rgbaimg, cams2world)):
|
484 |
+
# np.save(os.path.join(outdir, f"{i:03d}.npy"), pose)
|
485 |
+
# pl.imsave(os.path.join(outdir, f"{i:03d}.png"), img)
|
486 |
+
# pl.imsave(os.path.join(outdir, f"{i:03d}_rgba.png"), img_rgba)
|
487 |
+
# # np.save(os.path.join(outdir, f"{i:03d}_focal.npy"), to_numpy(focal))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
# save the min/max radius of camera
|
489 |
radii = np.linalg.norm(np.linalg.inv(cams2world)[..., :3, 3])
|
490 |
+
# np.save(os.path.join(outdir, "radii.npy"), radii)
|
491 |
|
492 |
eschernet_input = {"poses": cams2world,
|
493 |
"radii": radii,
|
494 |
"imgs": rgbaimg}
|
495 |
print("got eschernet input")
|
496 |
+
# outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
|
497 |
+
# clean_depth, transparent_cams, cam_size, same_focals=same_focals)
|
498 |
|
499 |
return scene, outfile, imgs, eschernet_input
|
500 |
|
501 |
|
502 |
+
|
503 |
+
|
504 |
def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type):
|
505 |
num_files = len(inputfiles) if inputfiles is not None else 1
|
506 |
max_winsize = max(1, math.ceil((num_files - 1) / 2))
|