Tune-A-Video-Training-UI / app_upload.py
kvmbangsat's picture
Duplicate from Tune-A-Video-library/Tune-A-Video-Training-UI
4c0bd41
#!/usr/bin/env python
from __future__ import annotations
import pathlib
import gradio as gr
import slugify
from constants import MODEL_LIBRARY_ORG_NAME, UploadTarget
from uploader import Uploader
from utils import find_exp_dirs
class ModelUploader(Uploader):
def upload_model(
self,
folder_path: str,
repo_name: str,
upload_to: str,
private: bool,
delete_existing_repo: bool,
input_token: str | None = None,
) -> str:
if not folder_path:
raise ValueError
if not repo_name:
repo_name = pathlib.Path(folder_path).name
repo_name = slugify.slugify(repo_name)
if upload_to == UploadTarget.PERSONAL_PROFILE.value:
organization = ''
elif upload_to == UploadTarget.MODEL_LIBRARY.value:
organization = MODEL_LIBRARY_ORG_NAME
else:
raise ValueError
return self.upload(folder_path,
repo_name,
organization=organization,
private=private,
delete_existing_repo=delete_existing_repo,
input_token=input_token)
def load_local_model_list() -> dict:
choices = find_exp_dirs()
return gr.update(choices=choices, value=choices[0] if choices else None)
def create_upload_demo(hf_token: str | None) -> gr.Blocks:
uploader = ModelUploader(hf_token)
model_dirs = find_exp_dirs()
with gr.Blocks() as demo:
with gr.Box():
gr.Markdown('Local Models')
reload_button = gr.Button('Reload Model List')
model_dir = gr.Dropdown(
label='Model names',
choices=model_dirs,
value=model_dirs[0] if model_dirs else None)
with gr.Box():
gr.Markdown('Upload Settings')
with gr.Row():
use_private_repo = gr.Checkbox(label='Private', value=True)
delete_existing_repo = gr.Checkbox(
label='Delete existing repo of the same name', value=False)
upload_to = gr.Radio(label='Upload to',
choices=[_.value for _ in UploadTarget],
value=UploadTarget.MODEL_LIBRARY.value)
model_name = gr.Textbox(label='Model Name')
input_token = gr.Text(label='Hugging Face Write Token',
placeholder='',
visible=False if hf_token else True)
upload_button = gr.Button('Upload')
gr.Markdown(f'''
- You can upload your trained model to your personal profile (i.e. https://huggingface.co/{{your_username}}/{{model_name}}) or to the public [Tune-A-Video Library](https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}) (i.e. https://huggingface.co/{MODEL_LIBRARY_ORG_NAME}/{{model_name}}).
''')
with gr.Box():
gr.Markdown('Output message')
output_message = gr.Markdown()
reload_button.click(fn=load_local_model_list,
inputs=None,
outputs=model_dir)
upload_button.click(fn=uploader.upload_model,
inputs=[
model_dir,
model_name,
upload_to,
use_private_repo,
delete_existing_repo,
input_token,
],
outputs=output_message)
return demo
if __name__ == '__main__':
import os
hf_token = os.getenv('HF_TOKEN')
demo = create_upload_demo(hf_token)
demo.queue(max_size=1).launch(share=False)