kusumakar commited on
Commit
6d700e4
·
1 Parent(s): f9f9974

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -1
app.py CHANGED
@@ -1,13 +1,18 @@
1
  import numpy as np
2
  from PIL import Image
3
  import streamlit as st
4
- from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
5
 
6
  # Directory path to the saved model on Google Drive
7
  model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
8
  feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
9
  tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
10
 
 
 
 
 
 
11
  def generate_captions(image):
12
  image = Image.open(image).convert("RGB")
13
  generated_caption = tokenizer.decode(model.generate(feature_extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0])
@@ -16,6 +21,18 @@ def generate_captions(image):
16
  generated_caption = sentence.replace(text_to_remove, "")
17
  return generated_caption
18
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  # create the Streamlit app
20
  def app():
21
  st.title('Image from your Side, Trending Hashtags from our Side')
@@ -36,6 +53,9 @@ def app():
36
  st.image(image, caption='The Uploaded File')
37
  st.write("First is first captions for your Photo : ", string)
38
 
 
 
 
39
  # run the app
40
  if __name__ == '__main__':
41
  app()
 
1
  import numpy as np
2
  from PIL import Image
3
  import streamlit as st
4
+ from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel, GPT2Tokenizer, GPT2LMHeadModel
5
 
6
  # Directory path to the saved model on Google Drive
7
  model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
8
  feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
9
  tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
10
 
11
+ # Load the pre-trained model and tokenizer
12
+ model_name = "gpt2"
13
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
14
+ model = GPT2LMHeadModel.from_pretrained(model_name)
15
+
16
  def generate_captions(image):
17
  image = Image.open(image).convert("RGB")
18
  generated_caption = tokenizer.decode(model.generate(feature_extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0])
 
21
  generated_caption = sentence.replace(text_to_remove, "")
22
  return generated_caption
23
 
24
+ # Define the Streamlit app
25
+ def generate_paragraph(prompt):
26
+ # Tokenize the prompt
27
+ input_ids = tokenizer.encode(prompt, return_tensors="pt")
28
+
29
+ # Generate the paragraph
30
+ output = model.generate(input_ids, max_length=200, num_return_sequences=1, early_stopping=True)
31
+
32
+ # Decode the generated output into text
33
+ paragraph = tokenizer.decode(output[0], skip_special_tokens=True)
34
+ return paragraph
35
+
36
  # create the Streamlit app
37
  def app():
38
  st.title('Image from your Side, Trending Hashtags from our Side')
 
53
  st.image(image, caption='The Uploaded File')
54
  st.write("First is first captions for your Photo : ", string)
55
 
56
+ generated_paragraph = generate_paragraph(string)
57
+
58
+ st.write(generated_paragraph)
59
  # run the app
60
  if __name__ == '__main__':
61
  app()