Spaces:
Runtime error
Runtime error
| #import all necessary libraries | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| import streamlit as st | |
| from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel, BartTokenizer, BartForConditionalGeneration | |
| # pre-trained model to arrive at context | |
| model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
| feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
| tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") | |
| # pre-trained to arrive at description | |
| tokenizer_2 = BartTokenizer.from_pretrained("facebook/bart-large-cnn") | |
| model_2 = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") | |
| # function to generate context | |
| def generate_captions(image): | |
| image = Image.open(image).convert("RGB") | |
| generated_caption = tokenizer.decode(model.generate(feature_extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0]) | |
| sentence = generated_caption | |
| text_to_remove = "<|endoftext|>" | |
| generated_caption = sentence.replace(text_to_remove, "") | |
| return generated_caption | |
| # function to generate description | |
| def generate_paragraph(caption): | |
| # Tokenize the caption | |
| inputs = tokenizer_2([caption], max_length=1024, truncation=True, padding="longest", return_tensors="pt") | |
| # Generate text | |
| output = model_2.generate(inputs.input_ids, attention_mask=inputs.attention_mask, max_length=200, num_beams=4, length_penalty=2.0, early_stopping=True) | |
| # Decode the generated output | |
| generated_text = tokenizer_2.decode(output[0], skip_special_tokens=True) | |
| return generated_text.capitalize() | |
| # create the Streamlit app | |
| def app(): | |
| st.title('Image from your Side, Detailed description from my site') | |
| st.write('Upload an image to see what we have in store.') | |
| # create file uploader | |
| uploaded_file = st.file_uploader("Got You Covered, Upload your wish!, magic on the Way! ", type=["jpg", "jpeg", "png"]) | |
| # check if file has been uploaded | |
| if uploaded_file is not None: | |
| # load the image | |
| image = Image.open(uploaded_file).convert("RGB") | |
| # Image Captions | |
| string = generate_captions(uploaded_file) | |
| st.image(image, caption='The Uploaded File') | |
| generated_paragraph = generate_paragraph(string) | |
| st.write(generated_paragraph) | |
| # run the app | |
| if __name__ == '__main__': | |
| app() |