Spaces:
Runtime error
Runtime error
import gradio | |
import torchaudio | |
from fastai.vision.all import * | |
from fastai.learner import load_learner | |
from torchvision.utils import save_image | |
from huggingface_hub import hf_hub_download | |
model = load_learner( | |
hf_hub_download("kurianbenoy/music_genre_classification_baseline", "model.pkl") | |
) | |
EXAMPLES_PATH = Path("./examples") | |
labels = model.dls.vocab | |
interface_options = { | |
"title": "Music Genre Classification", | |
"description": "A simple baseline model for classifying music genres with fast.ai on [Kaggle competition data](https://www.kaggle.com/competitions/kaggle-pog-series-s01e02/data)", | |
"examples": [f"{EXAMPLES_PATH}/{f.name}" for f in EXAMPLES_PATH.iterdir()], | |
"interpretation": "default", | |
"layout": "horizontal", | |
"theme": "default", | |
} | |
def predict(img): | |
img = PILImage.create(img) | |
_pred, _pred_w_idx, probs = model.predict(img) | |
labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)} | |
return labels_probs | |
demo = gradio.Interface( | |
fn=predict, | |
inputs=gradio.inputs.Image(shape=(512, 512)), | |
outputs=gradio.outputs.Label(num_top_classes=5), | |
**interface_options, | |
) | |
launch_options = { | |
"enable_queue": True, | |
"share": False, | |
} | |
demo.launch(**launch_options) | |