Spaces:
Sleeping
Sleeping
kunifujiwara
commited on
Commit
β’
301978a
1
Parent(s):
35aecf0
remove pages
Browse files- pages/{2_π _U.S._Housing.py β 0_π _U.S._Housing.py} +0 -0
- pages/10_π_Earth_Engine_Datasets.py +0 -162
- pages/11_π§±_Ordnance_Survey.py +0 -108
- pages/12_π²_Land_Cover_Mapping.py +0 -111
- pages/13_ποΈ_Global_Building_Footprints.py +0 -114
- pages/1_π²_Japan_Vegetation_Cover.py +482 -0
- pages/1_π·_Timelapse.py +0 -1534
- pages/3_πͺ_Split_Map.py +0 -30
- pages/4_π₯_Heatmap.py +0 -34
- pages/5_π_Marker_Cluster.py +0 -40
- pages/6_πΊοΈ_Basemaps.py +0 -62
- pages/7_π¦_Web_Map_Service.py +0 -105
- pages/8_ποΈ_Raster_Data_Visualization.py +0 -117
pages/{2_π _U.S._Housing.py β 0_π _U.S._Housing.py}
RENAMED
File without changes
|
pages/10_π_Earth_Engine_Datasets.py
DELETED
@@ -1,162 +0,0 @@
|
|
1 |
-
import ee
|
2 |
-
import json
|
3 |
-
import streamlit as st
|
4 |
-
import geemap.foliumap as geemap
|
5 |
-
|
6 |
-
st.set_page_config(layout="wide")
|
7 |
-
|
8 |
-
st.sidebar.info(
|
9 |
-
"""
|
10 |
-
- Web App URL: <https://streamlit.gishub.org>
|
11 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
12 |
-
"""
|
13 |
-
)
|
14 |
-
|
15 |
-
st.sidebar.title("Contact")
|
16 |
-
st.sidebar.info(
|
17 |
-
"""
|
18 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
19 |
-
"""
|
20 |
-
)
|
21 |
-
|
22 |
-
|
23 |
-
def nlcd():
|
24 |
-
|
25 |
-
# st.header("National Land Cover Database (NLCD)")
|
26 |
-
|
27 |
-
row1_col1, row1_col2 = st.columns([3, 1])
|
28 |
-
width = 950
|
29 |
-
height = 600
|
30 |
-
|
31 |
-
Map = geemap.Map(center=[40, -100], zoom=4)
|
32 |
-
|
33 |
-
# Select the seven NLCD epoches after 2000.
|
34 |
-
years = ["2001", "2004", "2006", "2008", "2011", "2013", "2016", "2019"]
|
35 |
-
|
36 |
-
# Get an NLCD image by year.
|
37 |
-
def getNLCD(year):
|
38 |
-
# Import the NLCD collection.
|
39 |
-
dataset = ee.ImageCollection("USGS/NLCD_RELEASES/2019_REL/NLCD")
|
40 |
-
|
41 |
-
# Filter the collection by year.
|
42 |
-
nlcd = dataset.filter(ee.Filter.eq("system:index", year)).first()
|
43 |
-
|
44 |
-
# Select the land cover band.
|
45 |
-
landcover = nlcd.select("landcover")
|
46 |
-
return landcover
|
47 |
-
|
48 |
-
with row1_col2:
|
49 |
-
selected_year = st.multiselect("Select a year", years)
|
50 |
-
add_legend = st.checkbox("Show legend")
|
51 |
-
|
52 |
-
if selected_year:
|
53 |
-
for year in selected_year:
|
54 |
-
Map.addLayer(getNLCD(year), {}, "NLCD " + year)
|
55 |
-
|
56 |
-
if add_legend:
|
57 |
-
Map.add_legend(
|
58 |
-
legend_title="NLCD Land Cover Classification", builtin_legend="NLCD"
|
59 |
-
)
|
60 |
-
with row1_col1:
|
61 |
-
Map.to_streamlit(width=width, height=height)
|
62 |
-
|
63 |
-
else:
|
64 |
-
with row1_col1:
|
65 |
-
Map.to_streamlit(width=width, height=height)
|
66 |
-
|
67 |
-
|
68 |
-
def search_data():
|
69 |
-
|
70 |
-
# st.header("Search Earth Engine Data Catalog")
|
71 |
-
|
72 |
-
Map = geemap.Map()
|
73 |
-
|
74 |
-
if "ee_assets" not in st.session_state:
|
75 |
-
st.session_state["ee_assets"] = None
|
76 |
-
if "asset_titles" not in st.session_state:
|
77 |
-
st.session_state["asset_titles"] = None
|
78 |
-
|
79 |
-
col1, col2 = st.columns([2, 1])
|
80 |
-
|
81 |
-
dataset = None
|
82 |
-
with col2:
|
83 |
-
keyword = st.text_input("Enter a keyword to search (e.g., elevation)", "")
|
84 |
-
if keyword:
|
85 |
-
ee_assets = geemap.search_ee_data(keyword)
|
86 |
-
asset_titles = [x["title"] for x in ee_assets]
|
87 |
-
asset_types = [x["type"] for x in ee_assets]
|
88 |
-
|
89 |
-
translate = {
|
90 |
-
"image_collection": "ee.ImageCollection('",
|
91 |
-
"image": "ee.Image('",
|
92 |
-
"table": "ee.FeatureCollection('",
|
93 |
-
"table_collection": "ee.FeatureCollection('",
|
94 |
-
}
|
95 |
-
|
96 |
-
dataset = st.selectbox("Select a dataset", asset_titles)
|
97 |
-
if len(ee_assets) > 0:
|
98 |
-
st.session_state["ee_assets"] = ee_assets
|
99 |
-
st.session_state["asset_titles"] = asset_titles
|
100 |
-
|
101 |
-
if dataset is not None:
|
102 |
-
with st.expander("Show dataset details", True):
|
103 |
-
index = asset_titles.index(dataset)
|
104 |
-
|
105 |
-
html = geemap.ee_data_html(st.session_state["ee_assets"][index])
|
106 |
-
html = html.replace("\n", "")
|
107 |
-
st.markdown(html, True)
|
108 |
-
|
109 |
-
ee_id = ee_assets[index]["id"]
|
110 |
-
uid = ee_assets[index]["uid"]
|
111 |
-
st.markdown(f"""**Earth Engine Snippet:** `{ee_id}`""")
|
112 |
-
ee_asset = f"{translate[asset_types[index]]}{ee_id}')"
|
113 |
-
|
114 |
-
if ee_asset.startswith("ee.ImageCollection"):
|
115 |
-
ee_asset = ee.ImageCollection(ee_id)
|
116 |
-
elif ee_asset.startswith("ee.Image"):
|
117 |
-
ee_asset = ee.Image(ee_id)
|
118 |
-
elif ee_asset.startswith("ee.FeatureCollection"):
|
119 |
-
ee_asset = ee.FeatureCollection(ee_id)
|
120 |
-
|
121 |
-
vis_params = st.text_input(
|
122 |
-
"Enter visualization parameters as a dictionary", {}
|
123 |
-
)
|
124 |
-
layer_name = st.text_input("Enter a layer name", uid)
|
125 |
-
button = st.button("Add dataset to map")
|
126 |
-
if button:
|
127 |
-
vis = {}
|
128 |
-
try:
|
129 |
-
if vis_params.strip() == "":
|
130 |
-
# st.error("Please enter visualization parameters")
|
131 |
-
vis_params = "{}"
|
132 |
-
vis = json.loads(vis_params.replace("'", '"'))
|
133 |
-
if not isinstance(vis, dict):
|
134 |
-
st.error("Visualization parameters must be a dictionary")
|
135 |
-
try:
|
136 |
-
Map.addLayer(ee_asset, vis, layer_name)
|
137 |
-
except Exception as e:
|
138 |
-
st.error(f"Error adding layer: {e}")
|
139 |
-
except Exception as e:
|
140 |
-
st.error(f"Invalid visualization parameters: {e}")
|
141 |
-
|
142 |
-
with col1:
|
143 |
-
Map.to_streamlit()
|
144 |
-
else:
|
145 |
-
with col1:
|
146 |
-
Map.to_streamlit()
|
147 |
-
|
148 |
-
|
149 |
-
def app():
|
150 |
-
st.title("Earth Engine Data Catalog")
|
151 |
-
|
152 |
-
apps = ["Search Earth Engine Data Catalog", "National Land Cover Database (NLCD)"]
|
153 |
-
|
154 |
-
selected_app = st.selectbox("Select an app", apps)
|
155 |
-
|
156 |
-
if selected_app == "National Land Cover Database (NLCD)":
|
157 |
-
nlcd()
|
158 |
-
elif selected_app == "Search Earth Engine Data Catalog":
|
159 |
-
search_data()
|
160 |
-
|
161 |
-
|
162 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/11_π§±_Ordnance_Survey.py
DELETED
@@ -1,108 +0,0 @@
|
|
1 |
-
import folium
|
2 |
-
import pandas as pd
|
3 |
-
import streamlit as st
|
4 |
-
import leafmap.foliumap as leafmap
|
5 |
-
import folium.plugins as plugins
|
6 |
-
|
7 |
-
st.set_page_config(layout="wide")
|
8 |
-
|
9 |
-
st.sidebar.info(
|
10 |
-
"""
|
11 |
-
- Web App URL: <https://streamlit.gishub.org>
|
12 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
13 |
-
"""
|
14 |
-
)
|
15 |
-
|
16 |
-
st.sidebar.title("Contact")
|
17 |
-
st.sidebar.info(
|
18 |
-
"""
|
19 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
20 |
-
"""
|
21 |
-
)
|
22 |
-
|
23 |
-
st.title("National Library of Scotland XYZ Layers")
|
24 |
-
df = pd.read_csv("data/scotland_xyz.tsv", sep="\t")
|
25 |
-
basemaps = leafmap.basemaps
|
26 |
-
names = df["Name"].values.tolist() + list(basemaps.keys())
|
27 |
-
links = df["URL"].values.tolist() + list(basemaps.values())
|
28 |
-
|
29 |
-
col1, col2, col3, col4, col5, col6, col7 = st.columns([3, 3, 1, 1, 1, 1.5, 1.5])
|
30 |
-
with col1:
|
31 |
-
left_name = st.selectbox(
|
32 |
-
"Select the left layer",
|
33 |
-
names,
|
34 |
-
index=names.index("Great Britain - Bartholomew Half Inch, 1897-1907"),
|
35 |
-
)
|
36 |
-
|
37 |
-
with col2:
|
38 |
-
right_name = st.selectbox(
|
39 |
-
"Select the right layer",
|
40 |
-
names,
|
41 |
-
index=names.index("HYBRID"),
|
42 |
-
)
|
43 |
-
|
44 |
-
with col3:
|
45 |
-
# lat = st.slider('Latitude', -90.0, 90.0, 55.68, step=0.01)
|
46 |
-
lat = st.text_input("Latitude", " 55.68")
|
47 |
-
|
48 |
-
with col4:
|
49 |
-
# lon = st.slider('Longitude', -180.0, 180.0, -2.98, step=0.01)
|
50 |
-
lon = st.text_input("Longitude", "-2.98")
|
51 |
-
|
52 |
-
with col5:
|
53 |
-
# zoom = st.slider('Zoom', 1, 24, 6, step=1)
|
54 |
-
zoom = st.text_input("Zoom", "6")
|
55 |
-
|
56 |
-
with col6:
|
57 |
-
checkbox = st.checkbox("Add OS 25 inch")
|
58 |
-
|
59 |
-
# with col7:
|
60 |
-
with st.expander("Acknowledgements"):
|
61 |
-
markdown = """
|
62 |
-
The map tile access is by kind arrangement of the National Library of Scotland on the understanding that re-use is for personal purposes. They host most of the map layers except these:
|
63 |
-
- The Roy Maps are owned by the British Library.
|
64 |
-
- The Great Britain β OS maps 1:25,000, 1937-61 and One Inch 7th series, 1955-61 are hosted by MapTiler.
|
65 |
-
|
66 |
-
If you wish you use these layers within a website, or for a commercial or public purpose, please view the [National Library of Scotland Historic Maps Subscription API](https://maps.nls.uk/projects/subscription-api/) or contact them at maps@nls.uk.
|
67 |
-
"""
|
68 |
-
st.markdown(markdown, unsafe_allow_html=True)
|
69 |
-
|
70 |
-
m = leafmap.Map(
|
71 |
-
center=[float(lat), float(lon)],
|
72 |
-
zoom=int(zoom),
|
73 |
-
locate_control=True,
|
74 |
-
draw_control=False,
|
75 |
-
measure_control=False,
|
76 |
-
)
|
77 |
-
measure = plugins.MeasureControl(position="bottomleft", active_color="orange")
|
78 |
-
measure.add_to(m)
|
79 |
-
|
80 |
-
if left_name in basemaps:
|
81 |
-
left_layer = basemaps[left_name]
|
82 |
-
else:
|
83 |
-
left_layer = folium.TileLayer(
|
84 |
-
tiles=links[names.index(left_name)],
|
85 |
-
name=left_name,
|
86 |
-
attr="National Library of Scotland",
|
87 |
-
overlay=True,
|
88 |
-
)
|
89 |
-
|
90 |
-
if right_name in basemaps:
|
91 |
-
right_layer = basemaps[right_name]
|
92 |
-
else:
|
93 |
-
right_layer = folium.TileLayer(
|
94 |
-
tiles=links[names.index(right_name)],
|
95 |
-
name=right_name,
|
96 |
-
attr="National Library of Scotland",
|
97 |
-
overlay=True,
|
98 |
-
)
|
99 |
-
|
100 |
-
if checkbox:
|
101 |
-
for index, name in enumerate(names):
|
102 |
-
if "OS 25 inch" in name:
|
103 |
-
m.add_tile_layer(
|
104 |
-
links[index], name, attribution="National Library of Scotland"
|
105 |
-
)
|
106 |
-
|
107 |
-
m.split_map(left_layer, right_layer)
|
108 |
-
m.to_streamlit(height=600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/12_π²_Land_Cover_Mapping.py
DELETED
@@ -1,111 +0,0 @@
|
|
1 |
-
import datetime
|
2 |
-
import ee
|
3 |
-
import streamlit as st
|
4 |
-
import geemap.foliumap as geemap
|
5 |
-
|
6 |
-
st.set_page_config(layout="wide")
|
7 |
-
|
8 |
-
st.sidebar.info(
|
9 |
-
"""
|
10 |
-
- Web App URL: <https://streamlit.gishub.org>
|
11 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
12 |
-
"""
|
13 |
-
)
|
14 |
-
|
15 |
-
st.sidebar.title("Contact")
|
16 |
-
st.sidebar.info(
|
17 |
-
"""
|
18 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
19 |
-
"""
|
20 |
-
)
|
21 |
-
|
22 |
-
st.title("Comparing Global Land Cover Maps")
|
23 |
-
|
24 |
-
col1, col2 = st.columns([4, 1])
|
25 |
-
|
26 |
-
Map = geemap.Map()
|
27 |
-
Map.add_basemap("ESA WorldCover 2020 S2 FCC")
|
28 |
-
Map.add_basemap("ESA WorldCover 2020 S2 TCC")
|
29 |
-
Map.add_basemap("HYBRID")
|
30 |
-
|
31 |
-
esa = ee.ImageCollection("ESA/WorldCover/v100").first()
|
32 |
-
esa_vis = {"bands": ["Map"]}
|
33 |
-
|
34 |
-
|
35 |
-
esri = ee.ImageCollection(
|
36 |
-
"projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m"
|
37 |
-
).mosaic()
|
38 |
-
esri_vis = {
|
39 |
-
"min": 1,
|
40 |
-
"max": 10,
|
41 |
-
"palette": [
|
42 |
-
"#1A5BAB",
|
43 |
-
"#358221",
|
44 |
-
"#A7D282",
|
45 |
-
"#87D19E",
|
46 |
-
"#FFDB5C",
|
47 |
-
"#EECFA8",
|
48 |
-
"#ED022A",
|
49 |
-
"#EDE9E4",
|
50 |
-
"#F2FAFF",
|
51 |
-
"#C8C8C8",
|
52 |
-
],
|
53 |
-
}
|
54 |
-
|
55 |
-
|
56 |
-
markdown = """
|
57 |
-
- [Dynamic World Land Cover](https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1?hl=en)
|
58 |
-
- [ESA Global Land Cover](https://developers.google.com/earth-engine/datasets/catalog/ESA_WorldCover_v100)
|
59 |
-
- [ESRI Global Land Cover](https://samapriya.github.io/awesome-gee-community-datasets/projects/esrilc2020)
|
60 |
-
|
61 |
-
"""
|
62 |
-
|
63 |
-
with col2:
|
64 |
-
|
65 |
-
longitude = st.number_input("Longitude", -180.0, 180.0, -89.3998)
|
66 |
-
latitude = st.number_input("Latitude", -90.0, 90.0, 43.0886)
|
67 |
-
zoom = st.number_input("Zoom", 0, 20, 11)
|
68 |
-
|
69 |
-
Map.setCenter(longitude, latitude, zoom)
|
70 |
-
|
71 |
-
start = st.date_input("Start Date for Dynamic World", datetime.date(2020, 1, 1))
|
72 |
-
end = st.date_input("End Date for Dynamic World", datetime.date(2021, 1, 1))
|
73 |
-
|
74 |
-
start_date = start.strftime("%Y-%m-%d")
|
75 |
-
end_date = end.strftime("%Y-%m-%d")
|
76 |
-
|
77 |
-
region = ee.Geometry.BBox(-179, -89, 179, 89)
|
78 |
-
dw = geemap.dynamic_world(region, start_date, end_date, return_type="hillshade")
|
79 |
-
|
80 |
-
layers = {
|
81 |
-
"Dynamic World": geemap.ee_tile_layer(dw, {}, "Dynamic World Land Cover"),
|
82 |
-
"ESA Land Cover": geemap.ee_tile_layer(esa, esa_vis, "ESA Land Cover"),
|
83 |
-
"ESRI Land Cover": geemap.ee_tile_layer(esri, esri_vis, "ESRI Land Cover"),
|
84 |
-
}
|
85 |
-
|
86 |
-
options = list(layers.keys())
|
87 |
-
left = st.selectbox("Select a left layer", options, index=1)
|
88 |
-
right = st.selectbox("Select a right layer", options, index=0)
|
89 |
-
|
90 |
-
left_layer = layers[left]
|
91 |
-
right_layer = layers[right]
|
92 |
-
|
93 |
-
Map.split_map(left_layer, right_layer)
|
94 |
-
|
95 |
-
legend = st.selectbox("Select a legend", options, index=options.index(right))
|
96 |
-
if legend == "Dynamic World":
|
97 |
-
Map.add_legend(
|
98 |
-
title="Dynamic World Land Cover",
|
99 |
-
builtin_legend="Dynamic_World",
|
100 |
-
)
|
101 |
-
elif legend == "ESA Land Cover":
|
102 |
-
Map.add_legend(title="ESA Land Cover", builtin_legend="ESA_WorldCover")
|
103 |
-
elif legend == "ESRI Land Cover":
|
104 |
-
Map.add_legend(title="ESRI Land Cover", builtin_legend="ESRI_LandCover")
|
105 |
-
|
106 |
-
with st.expander("Data sources"):
|
107 |
-
st.markdown(markdown)
|
108 |
-
|
109 |
-
|
110 |
-
with col1:
|
111 |
-
Map.to_streamlit(height=750)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/13_ποΈ_Global_Building_Footprints.py
DELETED
@@ -1,114 +0,0 @@
|
|
1 |
-
import ee
|
2 |
-
import geemap.foliumap as geemap
|
3 |
-
import geopandas as gpd
|
4 |
-
import streamlit as st
|
5 |
-
|
6 |
-
st.set_page_config(layout="wide")
|
7 |
-
|
8 |
-
|
9 |
-
def ee_authenticate(token_name="EARTHENGINE_TOKEN"):
|
10 |
-
geemap.ee_initialize(token_name=token_name)
|
11 |
-
|
12 |
-
|
13 |
-
st.sidebar.info(
|
14 |
-
"""
|
15 |
-
- Web App URL: <https://streamlit.gishub.org>
|
16 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
17 |
-
"""
|
18 |
-
)
|
19 |
-
|
20 |
-
st.sidebar.title("Contact")
|
21 |
-
st.sidebar.info(
|
22 |
-
"""
|
23 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
24 |
-
"""
|
25 |
-
)
|
26 |
-
|
27 |
-
st.title("Global Building Footprints")
|
28 |
-
|
29 |
-
col1, col2 = st.columns([8, 2])
|
30 |
-
|
31 |
-
|
32 |
-
@st.cache_data
|
33 |
-
def read_data(url):
|
34 |
-
return gpd.read_file(url)
|
35 |
-
|
36 |
-
|
37 |
-
countries = (
|
38 |
-
"https://github.com/giswqs/geemap/raw/master/examples/data/countries.geojson"
|
39 |
-
)
|
40 |
-
states = "https://github.com/giswqs/geemap/raw/master/examples/data/us_states.json"
|
41 |
-
|
42 |
-
countries_gdf = read_data(countries)
|
43 |
-
states_gdf = read_data(states)
|
44 |
-
|
45 |
-
country_names = countries_gdf["NAME"].values.tolist()
|
46 |
-
country_names.remove("United States of America")
|
47 |
-
country_names.append("USA")
|
48 |
-
country_names.sort()
|
49 |
-
country_names = [name.replace(".", "").replace(" ", "_") for name in country_names]
|
50 |
-
|
51 |
-
state_names = states_gdf["name"].values.tolist()
|
52 |
-
|
53 |
-
basemaps = list(geemap.basemaps)
|
54 |
-
|
55 |
-
Map = geemap.Map()
|
56 |
-
|
57 |
-
with col2:
|
58 |
-
|
59 |
-
basemap = st.selectbox("Select a basemap", basemaps, index=basemaps.index("HYBRID"))
|
60 |
-
Map.add_basemap(basemap)
|
61 |
-
|
62 |
-
country = st.selectbox(
|
63 |
-
"Select a country", country_names, index=country_names.index("USA")
|
64 |
-
)
|
65 |
-
|
66 |
-
if country == "USA":
|
67 |
-
state = st.selectbox(
|
68 |
-
"Select a state", state_names, index=state_names.index("Florida")
|
69 |
-
)
|
70 |
-
layer_name = state
|
71 |
-
|
72 |
-
try:
|
73 |
-
fc = ee.FeatureCollection(
|
74 |
-
f"projects/sat-io/open-datasets/MSBuildings/US/{state}"
|
75 |
-
)
|
76 |
-
except:
|
77 |
-
st.error("No data available for the selected state.")
|
78 |
-
|
79 |
-
else:
|
80 |
-
try:
|
81 |
-
fc = ee.FeatureCollection(
|
82 |
-
f"projects/sat-io/open-datasets/MSBuildings/{country}"
|
83 |
-
)
|
84 |
-
except:
|
85 |
-
st.error("No data available for the selected country.")
|
86 |
-
|
87 |
-
layer_name = country
|
88 |
-
|
89 |
-
color = st.color_picker("Select a color", "#FF5500")
|
90 |
-
|
91 |
-
style = {"fillColor": "00000000", "color": color}
|
92 |
-
|
93 |
-
split = st.checkbox("Split-panel map")
|
94 |
-
|
95 |
-
if split:
|
96 |
-
left = geemap.ee_tile_layer(fc.style(**style), {}, "Left")
|
97 |
-
right = left
|
98 |
-
Map.split_map(left, right)
|
99 |
-
else:
|
100 |
-
Map.addLayer(fc.style(**style), {}, layer_name)
|
101 |
-
|
102 |
-
Map.centerObject(fc.first(), zoom=16)
|
103 |
-
|
104 |
-
with st.expander("Data Sources"):
|
105 |
-
st.info(
|
106 |
-
"""
|
107 |
-
[Microsoft Building Footprints](https://gee-community-catalog.org/projects/msbuildings/)
|
108 |
-
"""
|
109 |
-
)
|
110 |
-
|
111 |
-
|
112 |
-
with col1:
|
113 |
-
|
114 |
-
Map.to_streamlit(height=1000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/1_π²_Japan_Vegetation_Cover.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import os
|
3 |
+
import pathlib
|
4 |
+
import requests
|
5 |
+
import zipfile
|
6 |
+
import pandas as pd
|
7 |
+
import pydeck as pdk
|
8 |
+
import geopandas as gpd
|
9 |
+
import streamlit as st
|
10 |
+
import leafmap.colormaps as cm
|
11 |
+
from leafmap.common import hex_to_rgb
|
12 |
+
|
13 |
+
st.set_page_config(layout="wide")
|
14 |
+
|
15 |
+
st.sidebar.info(
|
16 |
+
"""
|
17 |
+
- Web App URL: <https://streamlit.gishub.org>
|
18 |
+
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
19 |
+
"""
|
20 |
+
)
|
21 |
+
|
22 |
+
st.sidebar.title("Contact")
|
23 |
+
st.sidebar.info(
|
24 |
+
"""
|
25 |
+
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
26 |
+
"""
|
27 |
+
)
|
28 |
+
|
29 |
+
STREAMLIT_STATIC_PATH = pathlib.Path(st.__path__[0]) / "static"
|
30 |
+
# We create a downloads directory within the streamlit static asset directory
|
31 |
+
# and we write output files to it
|
32 |
+
DOWNLOADS_PATH = STREAMLIT_STATIC_PATH / "downloads"
|
33 |
+
if not DOWNLOADS_PATH.is_dir():
|
34 |
+
DOWNLOADS_PATH.mkdir()
|
35 |
+
|
36 |
+
# Data source: https://www.realtor.com/research/data/
|
37 |
+
# link_prefix = "https://econdata.s3-us-west-2.amazonaws.com/Reports/"
|
38 |
+
link_prefix = "https://raw.githubusercontent.com/giswqs/data/main/housing/"
|
39 |
+
|
40 |
+
data_links = {
|
41 |
+
"weekly": {
|
42 |
+
"national": link_prefix + "Core/listing_weekly_core_aggregate_by_country.csv",
|
43 |
+
"metro": link_prefix + "Core/listing_weekly_core_aggregate_by_metro.csv",
|
44 |
+
},
|
45 |
+
"monthly_current": {
|
46 |
+
"national": link_prefix + "Core/RDC_Inventory_Core_Metrics_Country.csv",
|
47 |
+
"state": link_prefix + "Core/RDC_Inventory_Core_Metrics_State.csv",
|
48 |
+
"metro": link_prefix + "Core/RDC_Inventory_Core_Metrics_Metro.csv",
|
49 |
+
"county": link_prefix + "Core/RDC_Inventory_Core_Metrics_County.csv",
|
50 |
+
"zip": link_prefix + "Core/RDC_Inventory_Core_Metrics_Zip.csv",
|
51 |
+
},
|
52 |
+
"monthly_historical": {
|
53 |
+
"national": link_prefix + "Core/RDC_Inventory_Core_Metrics_Country_History.csv",
|
54 |
+
"state": link_prefix + "Core/RDC_Inventory_Core_Metrics_State_History.csv",
|
55 |
+
"metro": link_prefix + "Core/RDC_Inventory_Core_Metrics_Metro_History.csv",
|
56 |
+
"county": link_prefix + "Core/RDC_Inventory_Core_Metrics_County_History.csv",
|
57 |
+
"zip": link_prefix + "Core/RDC_Inventory_Core_Metrics_Zip_History.csv",
|
58 |
+
},
|
59 |
+
"hotness": {
|
60 |
+
"metro": link_prefix
|
61 |
+
+ "Hotness/RDC_Inventory_Hotness_Metrics_Metro_History.csv",
|
62 |
+
"county": link_prefix
|
63 |
+
+ "Hotness/RDC_Inventory_Hotness_Metrics_County_History.csv",
|
64 |
+
"zip": link_prefix + "Hotness/RDC_Inventory_Hotness_Metrics_Zip_History.csv",
|
65 |
+
},
|
66 |
+
}
|
67 |
+
|
68 |
+
|
69 |
+
def get_data_columns(df, category, frequency="monthly"):
|
70 |
+
if frequency == "monthly":
|
71 |
+
if category.lower() == "county":
|
72 |
+
del_cols = ["month_date_yyyymm", "county_fips", "county_name"]
|
73 |
+
elif category.lower() == "state":
|
74 |
+
del_cols = ["month_date_yyyymm", "state", "state_id"]
|
75 |
+
elif category.lower() == "national":
|
76 |
+
del_cols = ["month_date_yyyymm", "country"]
|
77 |
+
elif category.lower() == "metro":
|
78 |
+
del_cols = ["month_date_yyyymm", "cbsa_code", "cbsa_title", "HouseholdRank"]
|
79 |
+
elif category.lower() == "zip":
|
80 |
+
del_cols = ["month_date_yyyymm", "postal_code", "zip_name", "flag"]
|
81 |
+
elif frequency == "weekly":
|
82 |
+
if category.lower() == "national":
|
83 |
+
del_cols = ["week_end_date", "geo_country"]
|
84 |
+
elif category.lower() == "metro":
|
85 |
+
del_cols = ["week_end_date", "cbsa_code", "cbsa_title", "hh_rank"]
|
86 |
+
|
87 |
+
cols = df.columns.values.tolist()
|
88 |
+
|
89 |
+
for col in cols:
|
90 |
+
if col.strip() in del_cols:
|
91 |
+
cols.remove(col)
|
92 |
+
if category.lower() == "metro":
|
93 |
+
return cols[2:]
|
94 |
+
else:
|
95 |
+
return cols[1:]
|
96 |
+
|
97 |
+
|
98 |
+
@st.cache_data
|
99 |
+
def get_inventory_data(url):
|
100 |
+
df = pd.read_csv(url)
|
101 |
+
url = url.lower()
|
102 |
+
if "county" in url:
|
103 |
+
df["county_fips"] = df["county_fips"].map(str)
|
104 |
+
df["county_fips"] = df["county_fips"].str.zfill(5)
|
105 |
+
elif "state" in url:
|
106 |
+
df["STUSPS"] = df["state_id"].str.upper()
|
107 |
+
elif "metro" in url:
|
108 |
+
df["cbsa_code"] = df["cbsa_code"].map(str)
|
109 |
+
elif "zip" in url:
|
110 |
+
df["postal_code"] = df["postal_code"].map(str)
|
111 |
+
df["postal_code"] = df["postal_code"].str.zfill(5)
|
112 |
+
|
113 |
+
if "listing_weekly_core_aggregate_by_country" in url:
|
114 |
+
columns = get_data_columns(df, "national", "weekly")
|
115 |
+
for column in columns:
|
116 |
+
if column != "median_days_on_market_by_day_yy":
|
117 |
+
df[column] = df[column].str.rstrip("%").astype(float) / 100
|
118 |
+
if "listing_weekly_core_aggregate_by_metro" in url:
|
119 |
+
columns = get_data_columns(df, "metro", "weekly")
|
120 |
+
for column in columns:
|
121 |
+
if column != "median_days_on_market_by_day_yy":
|
122 |
+
df[column] = df[column].str.rstrip("%").astype(float) / 100
|
123 |
+
df["cbsa_code"] = df["cbsa_code"].str[:5]
|
124 |
+
return df
|
125 |
+
|
126 |
+
|
127 |
+
def filter_weekly_inventory(df, week):
|
128 |
+
df = df[df["week_end_date"] == week]
|
129 |
+
return df
|
130 |
+
|
131 |
+
|
132 |
+
def get_start_end_year(df):
|
133 |
+
start_year = int(str(df["month_date_yyyymm"].min())[:4])
|
134 |
+
end_year = int(str(df["month_date_yyyymm"].max())[:4])
|
135 |
+
return start_year, end_year
|
136 |
+
|
137 |
+
|
138 |
+
def get_periods(df):
|
139 |
+
return [str(d) for d in list(set(df["month_date_yyyymm"].tolist()))]
|
140 |
+
|
141 |
+
|
142 |
+
@st.cache_data
|
143 |
+
def get_geom_data(category):
|
144 |
+
|
145 |
+
prefix = (
|
146 |
+
"https://raw.githubusercontent.com/giswqs/streamlit-geospatial/master/data/"
|
147 |
+
)
|
148 |
+
links = {
|
149 |
+
"national": prefix + "us_nation.geojson",
|
150 |
+
"state": prefix + "us_states.geojson",
|
151 |
+
"county": prefix + "us_counties.geojson",
|
152 |
+
"metro": prefix + "us_metro_areas.geojson",
|
153 |
+
"zip": "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_zcta510_500k.zip",
|
154 |
+
}
|
155 |
+
|
156 |
+
if category.lower() == "zip":
|
157 |
+
r = requests.get(links[category])
|
158 |
+
out_zip = os.path.join(DOWNLOADS_PATH, "cb_2018_us_zcta510_500k.zip")
|
159 |
+
with open(out_zip, "wb") as code:
|
160 |
+
code.write(r.content)
|
161 |
+
zip_ref = zipfile.ZipFile(out_zip, "r")
|
162 |
+
zip_ref.extractall(DOWNLOADS_PATH)
|
163 |
+
gdf = gpd.read_file(out_zip.replace("zip", "shp"))
|
164 |
+
else:
|
165 |
+
gdf = gpd.read_file(links[category])
|
166 |
+
return gdf
|
167 |
+
|
168 |
+
|
169 |
+
def join_attributes(gdf, df, category):
|
170 |
+
|
171 |
+
new_gdf = None
|
172 |
+
if category == "county":
|
173 |
+
new_gdf = gdf.merge(df, left_on="GEOID", right_on="county_fips", how="outer")
|
174 |
+
elif category == "state":
|
175 |
+
new_gdf = gdf.merge(df, left_on="STUSPS", right_on="STUSPS", how="outer")
|
176 |
+
elif category == "national":
|
177 |
+
if "geo_country" in df.columns.values.tolist():
|
178 |
+
df["country"] = None
|
179 |
+
df.loc[0, "country"] = "United States"
|
180 |
+
new_gdf = gdf.merge(df, left_on="NAME", right_on="country", how="outer")
|
181 |
+
elif category == "metro":
|
182 |
+
new_gdf = gdf.merge(df, left_on="CBSAFP", right_on="cbsa_code", how="outer")
|
183 |
+
elif category == "zip":
|
184 |
+
new_gdf = gdf.merge(df, left_on="GEOID10", right_on="postal_code", how="outer")
|
185 |
+
return new_gdf
|
186 |
+
|
187 |
+
|
188 |
+
def select_non_null(gdf, col_name):
|
189 |
+
new_gdf = gdf[~gdf[col_name].isna()]
|
190 |
+
return new_gdf
|
191 |
+
|
192 |
+
|
193 |
+
def select_null(gdf, col_name):
|
194 |
+
new_gdf = gdf[gdf[col_name].isna()]
|
195 |
+
return new_gdf
|
196 |
+
|
197 |
+
|
198 |
+
def get_data_dict(name):
|
199 |
+
in_csv = os.path.join(os.getcwd(), "data/realtor_data_dict.csv")
|
200 |
+
df = pd.read_csv(in_csv)
|
201 |
+
label = list(df[df["Name"] == name]["Label"])[0]
|
202 |
+
desc = list(df[df["Name"] == name]["Description"])[0]
|
203 |
+
return label, desc
|
204 |
+
|
205 |
+
|
206 |
+
def get_weeks(df):
|
207 |
+
seq = list(set(df[~df["week_end_date"].isnull()]["week_end_date"].tolist()))
|
208 |
+
weeks = [
|
209 |
+
datetime.date(int(d.split("/")[2]), int(d.split("/")[0]), int(d.split("/")[1]))
|
210 |
+
for d in seq
|
211 |
+
]
|
212 |
+
weeks.sort()
|
213 |
+
return weeks
|
214 |
+
|
215 |
+
|
216 |
+
def get_saturday(in_date):
|
217 |
+
idx = (in_date.weekday() + 1) % 7
|
218 |
+
sat = in_date + datetime.timedelta(6 - idx)
|
219 |
+
return sat
|
220 |
+
|
221 |
+
|
222 |
+
def app():
|
223 |
+
|
224 |
+
st.title("U.S. Real Estate Data and Market Trends")
|
225 |
+
st.markdown(
|
226 |
+
"""**Introduction:** This interactive dashboard is designed for visualizing U.S. real estate data and market trends at multiple levels (i.e., national,
|
227 |
+
state, county, and metro). The data sources include [Real Estate Data](https://www.realtor.com/research/data) from realtor.com and
|
228 |
+
[Cartographic Boundary Files](https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html) from U.S. Census Bureau.
|
229 |
+
Several open-source packages are used to process the data and generate the visualizations, e.g., [streamlit](https://streamlit.io),
|
230 |
+
[geopandas](https://geopandas.org), [leafmap](https://leafmap.org), and [pydeck](https://deckgl.readthedocs.io).
|
231 |
+
"""
|
232 |
+
)
|
233 |
+
|
234 |
+
with st.expander("See a demo"):
|
235 |
+
st.image("https://i.imgur.com/Z3dk6Tr.gif")
|
236 |
+
|
237 |
+
row1_col1, row1_col2, row1_col3, row1_col4, row1_col5 = st.columns(
|
238 |
+
[0.6, 0.8, 0.6, 1.4, 2]
|
239 |
+
)
|
240 |
+
with row1_col1:
|
241 |
+
frequency = st.selectbox("Monthly/weekly data", ["Monthly", "Weekly"])
|
242 |
+
with row1_col2:
|
243 |
+
types = ["Current month data", "Historical data"]
|
244 |
+
if frequency == "Weekly":
|
245 |
+
types.remove("Current month data")
|
246 |
+
cur_hist = st.selectbox(
|
247 |
+
"Current/historical data",
|
248 |
+
types,
|
249 |
+
)
|
250 |
+
with row1_col3:
|
251 |
+
if frequency == "Monthly":
|
252 |
+
scale = st.selectbox(
|
253 |
+
"Scale", ["National", "State", "Metro", "County"], index=3
|
254 |
+
)
|
255 |
+
else:
|
256 |
+
scale = st.selectbox("Scale", ["National", "Metro"], index=1)
|
257 |
+
|
258 |
+
gdf = get_geom_data(scale.lower())
|
259 |
+
|
260 |
+
if frequency == "Weekly":
|
261 |
+
inventory_df = get_inventory_data(data_links["weekly"][scale.lower()])
|
262 |
+
weeks = get_weeks(inventory_df)
|
263 |
+
with row1_col1:
|
264 |
+
selected_date = st.date_input("Select a date", value=weeks[-1])
|
265 |
+
saturday = get_saturday(selected_date)
|
266 |
+
selected_period = saturday.strftime("%-m/%-d/%Y")
|
267 |
+
if saturday not in weeks:
|
268 |
+
st.error(
|
269 |
+
"The selected date is not available in the data. Please select a date between {} and {}".format(
|
270 |
+
weeks[0], weeks[-1]
|
271 |
+
)
|
272 |
+
)
|
273 |
+
selected_period = weeks[-1].strftime("%-m/%-d/%Y")
|
274 |
+
inventory_df = get_inventory_data(data_links["weekly"][scale.lower()])
|
275 |
+
inventory_df = filter_weekly_inventory(inventory_df, selected_period)
|
276 |
+
|
277 |
+
if frequency == "Monthly":
|
278 |
+
if cur_hist == "Current month data":
|
279 |
+
inventory_df = get_inventory_data(
|
280 |
+
data_links["monthly_current"][scale.lower()]
|
281 |
+
)
|
282 |
+
selected_period = get_periods(inventory_df)[0]
|
283 |
+
else:
|
284 |
+
with row1_col2:
|
285 |
+
inventory_df = get_inventory_data(
|
286 |
+
data_links["monthly_historical"][scale.lower()]
|
287 |
+
)
|
288 |
+
start_year, end_year = get_start_end_year(inventory_df)
|
289 |
+
periods = get_periods(inventory_df)
|
290 |
+
with st.expander("Select year and month", True):
|
291 |
+
selected_year = st.slider(
|
292 |
+
"Year",
|
293 |
+
start_year,
|
294 |
+
end_year,
|
295 |
+
value=start_year,
|
296 |
+
step=1,
|
297 |
+
)
|
298 |
+
selected_month = st.slider(
|
299 |
+
"Month",
|
300 |
+
min_value=1,
|
301 |
+
max_value=12,
|
302 |
+
value=int(periods[0][-2:]),
|
303 |
+
step=1,
|
304 |
+
)
|
305 |
+
selected_period = str(selected_year) + str(selected_month).zfill(2)
|
306 |
+
if selected_period not in periods:
|
307 |
+
st.error("Data not available for selected year and month")
|
308 |
+
selected_period = periods[0]
|
309 |
+
inventory_df = inventory_df[
|
310 |
+
inventory_df["month_date_yyyymm"] == int(selected_period)
|
311 |
+
]
|
312 |
+
|
313 |
+
data_cols = get_data_columns(inventory_df, scale.lower(), frequency.lower())
|
314 |
+
|
315 |
+
with row1_col4:
|
316 |
+
selected_col = st.selectbox("Attribute", data_cols)
|
317 |
+
with row1_col5:
|
318 |
+
show_desc = st.checkbox("Show attribute description")
|
319 |
+
if show_desc:
|
320 |
+
try:
|
321 |
+
label, desc = get_data_dict(selected_col.strip())
|
322 |
+
markdown = f"""
|
323 |
+
**{label}**: {desc}
|
324 |
+
"""
|
325 |
+
st.markdown(markdown)
|
326 |
+
except:
|
327 |
+
st.warning("No description available for selected attribute")
|
328 |
+
|
329 |
+
row2_col1, row2_col2, row2_col3, row2_col4, row2_col5, row2_col6 = st.columns(
|
330 |
+
[0.6, 0.68, 0.7, 0.7, 1.5, 0.8]
|
331 |
+
)
|
332 |
+
|
333 |
+
palettes = cm.list_colormaps()
|
334 |
+
with row2_col1:
|
335 |
+
palette = st.selectbox("Color palette", palettes, index=palettes.index("Blues"))
|
336 |
+
with row2_col2:
|
337 |
+
n_colors = st.slider("Number of colors", min_value=2, max_value=20, value=8)
|
338 |
+
with row2_col3:
|
339 |
+
show_nodata = st.checkbox("Show nodata areas", value=True)
|
340 |
+
with row2_col4:
|
341 |
+
show_3d = st.checkbox("Show 3D view", value=False)
|
342 |
+
with row2_col5:
|
343 |
+
if show_3d:
|
344 |
+
elev_scale = st.slider(
|
345 |
+
"Elevation scale", min_value=1, max_value=1000000, value=1, step=10
|
346 |
+
)
|
347 |
+
with row2_col6:
|
348 |
+
st.info("Press Ctrl and move the left mouse button.")
|
349 |
+
else:
|
350 |
+
elev_scale = 1
|
351 |
+
|
352 |
+
gdf = join_attributes(gdf, inventory_df, scale.lower())
|
353 |
+
gdf_null = select_null(gdf, selected_col)
|
354 |
+
gdf = select_non_null(gdf, selected_col)
|
355 |
+
gdf = gdf.sort_values(by=selected_col, ascending=True)
|
356 |
+
|
357 |
+
colors = cm.get_palette(palette, n_colors)
|
358 |
+
colors = [hex_to_rgb(c) for c in colors]
|
359 |
+
|
360 |
+
for i, ind in enumerate(gdf.index):
|
361 |
+
index = int(i / (len(gdf) / len(colors)))
|
362 |
+
if index >= len(colors):
|
363 |
+
index = len(colors) - 1
|
364 |
+
gdf.loc[ind, "R"] = colors[index][0]
|
365 |
+
gdf.loc[ind, "G"] = colors[index][1]
|
366 |
+
gdf.loc[ind, "B"] = colors[index][2]
|
367 |
+
|
368 |
+
initial_view_state = pdk.ViewState(
|
369 |
+
latitude=40,
|
370 |
+
longitude=-100,
|
371 |
+
zoom=3,
|
372 |
+
max_zoom=16,
|
373 |
+
pitch=0,
|
374 |
+
bearing=0,
|
375 |
+
height=900,
|
376 |
+
width=None,
|
377 |
+
)
|
378 |
+
|
379 |
+
min_value = gdf[selected_col].min()
|
380 |
+
max_value = gdf[selected_col].max()
|
381 |
+
color = "color"
|
382 |
+
# color_exp = f"[({selected_col}-{min_value})/({max_value}-{min_value})*255, 0, 0]"
|
383 |
+
color_exp = f"[R, G, B]"
|
384 |
+
|
385 |
+
geojson = pdk.Layer(
|
386 |
+
"GeoJsonLayer",
|
387 |
+
gdf,
|
388 |
+
pickable=True,
|
389 |
+
opacity=0.5,
|
390 |
+
stroked=True,
|
391 |
+
filled=True,
|
392 |
+
extruded=show_3d,
|
393 |
+
wireframe=True,
|
394 |
+
get_elevation=f"{selected_col}",
|
395 |
+
elevation_scale=elev_scale,
|
396 |
+
# get_fill_color="color",
|
397 |
+
get_fill_color=color_exp,
|
398 |
+
get_line_color=[0, 0, 0],
|
399 |
+
get_line_width=2,
|
400 |
+
line_width_min_pixels=1,
|
401 |
+
)
|
402 |
+
|
403 |
+
geojson_null = pdk.Layer(
|
404 |
+
"GeoJsonLayer",
|
405 |
+
gdf_null,
|
406 |
+
pickable=True,
|
407 |
+
opacity=0.2,
|
408 |
+
stroked=True,
|
409 |
+
filled=True,
|
410 |
+
extruded=False,
|
411 |
+
wireframe=True,
|
412 |
+
# get_elevation="properties.ALAND/100000",
|
413 |
+
# get_fill_color="color",
|
414 |
+
get_fill_color=[200, 200, 200],
|
415 |
+
get_line_color=[0, 0, 0],
|
416 |
+
get_line_width=2,
|
417 |
+
line_width_min_pixels=1,
|
418 |
+
)
|
419 |
+
|
420 |
+
# tooltip = {"text": "Name: {NAME}"}
|
421 |
+
|
422 |
+
# tooltip_value = f"<b>Value:</b> {median_listing_price}""
|
423 |
+
tooltip = {
|
424 |
+
"html": "<b>Name:</b> {NAME}<br><b>Value:</b> {"
|
425 |
+
+ selected_col
|
426 |
+
+ "}<br><b>Date:</b> "
|
427 |
+
+ selected_period
|
428 |
+
+ "",
|
429 |
+
"style": {"backgroundColor": "steelblue", "color": "white"},
|
430 |
+
}
|
431 |
+
|
432 |
+
layers = [geojson]
|
433 |
+
if show_nodata:
|
434 |
+
layers.append(geojson_null)
|
435 |
+
|
436 |
+
r = pdk.Deck(
|
437 |
+
layers=layers,
|
438 |
+
initial_view_state=initial_view_state,
|
439 |
+
map_style="light",
|
440 |
+
tooltip=tooltip,
|
441 |
+
)
|
442 |
+
|
443 |
+
row3_col1, row3_col2 = st.columns([6, 1])
|
444 |
+
|
445 |
+
with row3_col1:
|
446 |
+
st.pydeck_chart(r)
|
447 |
+
with row3_col2:
|
448 |
+
st.write(
|
449 |
+
cm.create_colormap(
|
450 |
+
palette,
|
451 |
+
label=selected_col.replace("_", " ").title(),
|
452 |
+
width=0.2,
|
453 |
+
height=3,
|
454 |
+
orientation="vertical",
|
455 |
+
vmin=min_value,
|
456 |
+
vmax=max_value,
|
457 |
+
font_size=10,
|
458 |
+
)
|
459 |
+
)
|
460 |
+
row4_col1, row4_col2, row4_col3 = st.columns([1, 2, 3])
|
461 |
+
with row4_col1:
|
462 |
+
show_data = st.checkbox("Show raw data")
|
463 |
+
with row4_col2:
|
464 |
+
show_cols = st.multiselect("Select columns", data_cols)
|
465 |
+
with row4_col3:
|
466 |
+
show_colormaps = st.checkbox("Preview all color palettes")
|
467 |
+
if show_colormaps:
|
468 |
+
st.write(cm.plot_colormaps(return_fig=True))
|
469 |
+
if show_data:
|
470 |
+
if scale == "National":
|
471 |
+
st.dataframe(gdf[["NAME", "GEOID"] + show_cols])
|
472 |
+
elif scale == "State":
|
473 |
+
st.dataframe(gdf[["NAME", "STUSPS"] + show_cols])
|
474 |
+
elif scale == "County":
|
475 |
+
st.dataframe(gdf[["NAME", "STATEFP", "COUNTYFP"] + show_cols])
|
476 |
+
elif scale == "Metro":
|
477 |
+
st.dataframe(gdf[["NAME", "CBSAFP"] + show_cols])
|
478 |
+
elif scale == "Zip":
|
479 |
+
st.dataframe(gdf[["GEOID10"] + show_cols])
|
480 |
+
|
481 |
+
|
482 |
+
app()
|
pages/1_π·_Timelapse.py
DELETED
@@ -1,1534 +0,0 @@
|
|
1 |
-
import ee
|
2 |
-
import json
|
3 |
-
import os
|
4 |
-
import warnings
|
5 |
-
import datetime
|
6 |
-
import fiona
|
7 |
-
import geopandas as gpd
|
8 |
-
import folium
|
9 |
-
import streamlit as st
|
10 |
-
import geemap.colormaps as cm
|
11 |
-
import geemap.foliumap as geemap
|
12 |
-
from datetime import date
|
13 |
-
from shapely.geometry import Polygon
|
14 |
-
|
15 |
-
st.set_page_config(layout="wide")
|
16 |
-
warnings.filterwarnings("ignore")
|
17 |
-
|
18 |
-
|
19 |
-
@st.cache_data
|
20 |
-
def ee_authenticate(token_name="EARTHENGINE_TOKEN"):
|
21 |
-
geemap.ee_initialize(token_name=token_name)
|
22 |
-
|
23 |
-
|
24 |
-
st.sidebar.info(
|
25 |
-
"""
|
26 |
-
- Web App URL: <https://streamlit.gishub.org>
|
27 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
28 |
-
"""
|
29 |
-
)
|
30 |
-
|
31 |
-
st.sidebar.title("Contact")
|
32 |
-
st.sidebar.info(
|
33 |
-
"""
|
34 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
35 |
-
"""
|
36 |
-
)
|
37 |
-
|
38 |
-
goes_rois = {
|
39 |
-
"Creek Fire, CA (2020-09-05)": {
|
40 |
-
"region": Polygon(
|
41 |
-
[
|
42 |
-
[-121.003418, 36.848857],
|
43 |
-
[-121.003418, 39.049052],
|
44 |
-
[-117.905273, 39.049052],
|
45 |
-
[-117.905273, 36.848857],
|
46 |
-
[-121.003418, 36.848857],
|
47 |
-
]
|
48 |
-
),
|
49 |
-
"start_time": "2020-09-05T15:00:00",
|
50 |
-
"end_time": "2020-09-06T02:00:00",
|
51 |
-
},
|
52 |
-
"Bomb Cyclone (2021-10-24)": {
|
53 |
-
"region": Polygon(
|
54 |
-
[
|
55 |
-
[-159.5954, 60.4088],
|
56 |
-
[-159.5954, 24.5178],
|
57 |
-
[-114.2438, 24.5178],
|
58 |
-
[-114.2438, 60.4088],
|
59 |
-
]
|
60 |
-
),
|
61 |
-
"start_time": "2021-10-24T14:00:00",
|
62 |
-
"end_time": "2021-10-25T01:00:00",
|
63 |
-
},
|
64 |
-
"Hunga Tonga Volcanic Eruption (2022-01-15)": {
|
65 |
-
"region": Polygon(
|
66 |
-
[
|
67 |
-
[-192.480469, -32.546813],
|
68 |
-
[-192.480469, -8.754795],
|
69 |
-
[-157.587891, -8.754795],
|
70 |
-
[-157.587891, -32.546813],
|
71 |
-
[-192.480469, -32.546813],
|
72 |
-
]
|
73 |
-
),
|
74 |
-
"start_time": "2022-01-15T03:00:00",
|
75 |
-
"end_time": "2022-01-15T07:00:00",
|
76 |
-
},
|
77 |
-
"Hunga Tonga Volcanic Eruption Closer Look (2022-01-15)": {
|
78 |
-
"region": Polygon(
|
79 |
-
[
|
80 |
-
[-178.901367, -22.958393],
|
81 |
-
[-178.901367, -17.85329],
|
82 |
-
[-171.452637, -17.85329],
|
83 |
-
[-171.452637, -22.958393],
|
84 |
-
[-178.901367, -22.958393],
|
85 |
-
]
|
86 |
-
),
|
87 |
-
"start_time": "2022-01-15T03:00:00",
|
88 |
-
"end_time": "2022-01-15T07:00:00",
|
89 |
-
},
|
90 |
-
}
|
91 |
-
|
92 |
-
|
93 |
-
landsat_rois = {
|
94 |
-
"Aral Sea": Polygon(
|
95 |
-
[
|
96 |
-
[57.667236, 43.834527],
|
97 |
-
[57.667236, 45.996962],
|
98 |
-
[61.12793, 45.996962],
|
99 |
-
[61.12793, 43.834527],
|
100 |
-
[57.667236, 43.834527],
|
101 |
-
]
|
102 |
-
),
|
103 |
-
"Dubai": Polygon(
|
104 |
-
[
|
105 |
-
[54.541626, 24.763044],
|
106 |
-
[54.541626, 25.427152],
|
107 |
-
[55.632019, 25.427152],
|
108 |
-
[55.632019, 24.763044],
|
109 |
-
[54.541626, 24.763044],
|
110 |
-
]
|
111 |
-
),
|
112 |
-
"Hong Kong International Airport": Polygon(
|
113 |
-
[
|
114 |
-
[113.825226, 22.198849],
|
115 |
-
[113.825226, 22.349758],
|
116 |
-
[114.085121, 22.349758],
|
117 |
-
[114.085121, 22.198849],
|
118 |
-
[113.825226, 22.198849],
|
119 |
-
]
|
120 |
-
),
|
121 |
-
"Las Vegas, NV": Polygon(
|
122 |
-
[
|
123 |
-
[-115.554199, 35.804449],
|
124 |
-
[-115.554199, 36.558188],
|
125 |
-
[-113.903503, 36.558188],
|
126 |
-
[-113.903503, 35.804449],
|
127 |
-
[-115.554199, 35.804449],
|
128 |
-
]
|
129 |
-
),
|
130 |
-
"Pucallpa, Peru": Polygon(
|
131 |
-
[
|
132 |
-
[-74.672699, -8.600032],
|
133 |
-
[-74.672699, -8.254983],
|
134 |
-
[-74.279938, -8.254983],
|
135 |
-
[-74.279938, -8.600032],
|
136 |
-
]
|
137 |
-
),
|
138 |
-
"Sierra Gorda, Chile": Polygon(
|
139 |
-
[
|
140 |
-
[-69.315491, -22.837104],
|
141 |
-
[-69.315491, -22.751488],
|
142 |
-
[-69.190006, -22.751488],
|
143 |
-
[-69.190006, -22.837104],
|
144 |
-
[-69.315491, -22.837104],
|
145 |
-
]
|
146 |
-
),
|
147 |
-
}
|
148 |
-
|
149 |
-
modis_rois = {
|
150 |
-
"World": Polygon(
|
151 |
-
[
|
152 |
-
[-171.210938, -57.136239],
|
153 |
-
[-171.210938, 79.997168],
|
154 |
-
[177.539063, 79.997168],
|
155 |
-
[177.539063, -57.136239],
|
156 |
-
[-171.210938, -57.136239],
|
157 |
-
]
|
158 |
-
),
|
159 |
-
"Africa": Polygon(
|
160 |
-
[
|
161 |
-
[-18.6983, 38.1446],
|
162 |
-
[-18.6983, -36.1630],
|
163 |
-
[52.2293, -36.1630],
|
164 |
-
[52.2293, 38.1446],
|
165 |
-
]
|
166 |
-
),
|
167 |
-
"USA": Polygon(
|
168 |
-
[
|
169 |
-
[-127.177734, 23.725012],
|
170 |
-
[-127.177734, 50.792047],
|
171 |
-
[-66.269531, 50.792047],
|
172 |
-
[-66.269531, 23.725012],
|
173 |
-
[-127.177734, 23.725012],
|
174 |
-
]
|
175 |
-
),
|
176 |
-
}
|
177 |
-
|
178 |
-
ocean_rois = {
|
179 |
-
"Gulf of Mexico": Polygon(
|
180 |
-
[
|
181 |
-
[-101.206055, 15.496032],
|
182 |
-
[-101.206055, 32.361403],
|
183 |
-
[-75.673828, 32.361403],
|
184 |
-
[-75.673828, 15.496032],
|
185 |
-
[-101.206055, 15.496032],
|
186 |
-
]
|
187 |
-
),
|
188 |
-
"North Atlantic Ocean": Polygon(
|
189 |
-
[
|
190 |
-
[-85.341797, 24.046464],
|
191 |
-
[-85.341797, 45.02695],
|
192 |
-
[-55.810547, 45.02695],
|
193 |
-
[-55.810547, 24.046464],
|
194 |
-
[-85.341797, 24.046464],
|
195 |
-
]
|
196 |
-
),
|
197 |
-
"World": Polygon(
|
198 |
-
[
|
199 |
-
[-171.210938, -57.136239],
|
200 |
-
[-171.210938, 79.997168],
|
201 |
-
[177.539063, 79.997168],
|
202 |
-
[177.539063, -57.136239],
|
203 |
-
[-171.210938, -57.136239],
|
204 |
-
]
|
205 |
-
),
|
206 |
-
}
|
207 |
-
|
208 |
-
|
209 |
-
@st.cache_data
|
210 |
-
def uploaded_file_to_gdf(data):
|
211 |
-
import tempfile
|
212 |
-
import os
|
213 |
-
import uuid
|
214 |
-
|
215 |
-
_, file_extension = os.path.splitext(data.name)
|
216 |
-
file_id = str(uuid.uuid4())
|
217 |
-
file_path = os.path.join(tempfile.gettempdir(), f"{file_id}{file_extension}")
|
218 |
-
|
219 |
-
with open(file_path, "wb") as file:
|
220 |
-
file.write(data.getbuffer())
|
221 |
-
|
222 |
-
if file_path.lower().endswith(".kml"):
|
223 |
-
fiona.drvsupport.supported_drivers["KML"] = "rw"
|
224 |
-
gdf = gpd.read_file(file_path, driver="KML")
|
225 |
-
else:
|
226 |
-
gdf = gpd.read_file(file_path)
|
227 |
-
|
228 |
-
return gdf
|
229 |
-
|
230 |
-
|
231 |
-
def app():
|
232 |
-
|
233 |
-
today = date.today()
|
234 |
-
|
235 |
-
st.title("Create Satellite Timelapse")
|
236 |
-
|
237 |
-
st.markdown(
|
238 |
-
"""
|
239 |
-
An interactive web app for creating [Landsat](https://developers.google.com/earth-engine/datasets/catalog/landsat)/[GOES](https://jstnbraaten.medium.com/goes-in-earth-engine-53fbc8783c16) timelapse for any location around the globe.
|
240 |
-
The app was built using [streamlit](https://streamlit.io), [geemap](https://geemap.org), and [Google Earth Engine](https://earthengine.google.com). For more info, check out my streamlit [blog post](https://blog.streamlit.io/creating-satellite-timelapse-with-streamlit-and-earth-engine).
|
241 |
-
"""
|
242 |
-
)
|
243 |
-
|
244 |
-
row1_col1, row1_col2 = st.columns([2, 1])
|
245 |
-
|
246 |
-
if st.session_state.get("zoom_level") is None:
|
247 |
-
st.session_state["zoom_level"] = 4
|
248 |
-
|
249 |
-
st.session_state["ee_asset_id"] = None
|
250 |
-
st.session_state["bands"] = None
|
251 |
-
st.session_state["palette"] = None
|
252 |
-
st.session_state["vis_params"] = None
|
253 |
-
|
254 |
-
with row1_col1:
|
255 |
-
ee_authenticate(token_name="EARTHENGINE_TOKEN")
|
256 |
-
m = geemap.Map(
|
257 |
-
basemap="HYBRID",
|
258 |
-
plugin_Draw=True,
|
259 |
-
Draw_export=True,
|
260 |
-
locate_control=True,
|
261 |
-
plugin_LatLngPopup=False,
|
262 |
-
)
|
263 |
-
m.add_basemap("ROADMAP")
|
264 |
-
|
265 |
-
with row1_col2:
|
266 |
-
|
267 |
-
keyword = st.text_input("Search for a location:", "")
|
268 |
-
if keyword:
|
269 |
-
locations = geemap.geocode(keyword)
|
270 |
-
if locations is not None and len(locations) > 0:
|
271 |
-
str_locations = [str(g)[1:-1] for g in locations]
|
272 |
-
location = st.selectbox("Select a location:", str_locations)
|
273 |
-
loc_index = str_locations.index(location)
|
274 |
-
selected_loc = locations[loc_index]
|
275 |
-
lat, lng = selected_loc.lat, selected_loc.lng
|
276 |
-
folium.Marker(location=[lat, lng], popup=location).add_to(m)
|
277 |
-
m.set_center(lng, lat, 12)
|
278 |
-
st.session_state["zoom_level"] = 12
|
279 |
-
|
280 |
-
collection = st.selectbox(
|
281 |
-
"Select a satellite image collection: ",
|
282 |
-
[
|
283 |
-
"Any Earth Engine ImageCollection",
|
284 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
285 |
-
"Sentinel-2 MSI Surface Reflectance",
|
286 |
-
"Geostationary Operational Environmental Satellites (GOES)",
|
287 |
-
"MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
|
288 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
289 |
-
"MODIS Ocean Color SMI",
|
290 |
-
"USDA National Agriculture Imagery Program (NAIP)",
|
291 |
-
],
|
292 |
-
index=1,
|
293 |
-
)
|
294 |
-
|
295 |
-
if collection in [
|
296 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
297 |
-
"Sentinel-2 MSI Surface Reflectance",
|
298 |
-
]:
|
299 |
-
roi_options = ["Uploaded GeoJSON"] + list(landsat_rois.keys())
|
300 |
-
|
301 |
-
elif collection == "Geostationary Operational Environmental Satellites (GOES)":
|
302 |
-
roi_options = ["Uploaded GeoJSON"] + list(goes_rois.keys())
|
303 |
-
|
304 |
-
elif collection in [
|
305 |
-
"MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
|
306 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
307 |
-
]:
|
308 |
-
roi_options = ["Uploaded GeoJSON"] + list(modis_rois.keys())
|
309 |
-
elif collection == "MODIS Ocean Color SMI":
|
310 |
-
roi_options = ["Uploaded GeoJSON"] + list(ocean_rois.keys())
|
311 |
-
else:
|
312 |
-
roi_options = ["Uploaded GeoJSON"]
|
313 |
-
|
314 |
-
if collection == "Any Earth Engine ImageCollection":
|
315 |
-
keyword = st.text_input("Enter a keyword to search (e.g., MODIS):", "")
|
316 |
-
if keyword:
|
317 |
-
|
318 |
-
assets = geemap.search_ee_data(keyword)
|
319 |
-
ee_assets = []
|
320 |
-
for asset in assets:
|
321 |
-
if asset["ee_id_snippet"].startswith("ee.ImageCollection"):
|
322 |
-
ee_assets.append(asset)
|
323 |
-
|
324 |
-
asset_titles = [x["title"] for x in ee_assets]
|
325 |
-
dataset = st.selectbox("Select a dataset:", asset_titles)
|
326 |
-
if len(ee_assets) > 0:
|
327 |
-
st.session_state["ee_assets"] = ee_assets
|
328 |
-
st.session_state["asset_titles"] = asset_titles
|
329 |
-
index = asset_titles.index(dataset)
|
330 |
-
ee_id = ee_assets[index]["id"]
|
331 |
-
else:
|
332 |
-
ee_id = ""
|
333 |
-
|
334 |
-
if dataset is not None:
|
335 |
-
with st.expander("Show dataset details", False):
|
336 |
-
index = asset_titles.index(dataset)
|
337 |
-
html = geemap.ee_data_html(st.session_state["ee_assets"][index])
|
338 |
-
st.markdown(html, True)
|
339 |
-
# elif collection == "MODIS Gap filled Land Surface Temperature Daily":
|
340 |
-
# ee_id = ""
|
341 |
-
else:
|
342 |
-
ee_id = ""
|
343 |
-
|
344 |
-
asset_id = st.text_input("Enter an ee.ImageCollection asset ID:", ee_id)
|
345 |
-
|
346 |
-
if asset_id:
|
347 |
-
with st.expander("Customize band combination and color palette", True):
|
348 |
-
try:
|
349 |
-
col = ee.ImageCollection.load(asset_id)
|
350 |
-
st.session_state["ee_asset_id"] = asset_id
|
351 |
-
except:
|
352 |
-
st.error("Invalid Earth Engine asset ID.")
|
353 |
-
st.session_state["ee_asset_id"] = None
|
354 |
-
return
|
355 |
-
|
356 |
-
img_bands = col.first().bandNames().getInfo()
|
357 |
-
if len(img_bands) >= 3:
|
358 |
-
default_bands = img_bands[:3][::-1]
|
359 |
-
else:
|
360 |
-
default_bands = img_bands[:]
|
361 |
-
bands = st.multiselect(
|
362 |
-
"Select one or three bands (RGB):", img_bands, default_bands
|
363 |
-
)
|
364 |
-
st.session_state["bands"] = bands
|
365 |
-
|
366 |
-
if len(bands) == 1:
|
367 |
-
palette_options = st.selectbox(
|
368 |
-
"Color palette",
|
369 |
-
cm.list_colormaps(),
|
370 |
-
index=2,
|
371 |
-
)
|
372 |
-
palette_values = cm.get_palette(palette_options, 15)
|
373 |
-
palette = st.text_area(
|
374 |
-
"Enter a custom palette:",
|
375 |
-
palette_values,
|
376 |
-
)
|
377 |
-
st.write(
|
378 |
-
cm.plot_colormap(cmap=palette_options, return_fig=True)
|
379 |
-
)
|
380 |
-
st.session_state["palette"] = json.loads(
|
381 |
-
palette.replace("'", '"')
|
382 |
-
)
|
383 |
-
|
384 |
-
if bands:
|
385 |
-
vis_params = st.text_area(
|
386 |
-
"Enter visualization parameters",
|
387 |
-
"{'bands': ["
|
388 |
-
+ ", ".join([f"'{band}'" for band in bands])
|
389 |
-
+ "]}",
|
390 |
-
)
|
391 |
-
else:
|
392 |
-
vis_params = st.text_area(
|
393 |
-
"Enter visualization parameters",
|
394 |
-
"{}",
|
395 |
-
)
|
396 |
-
try:
|
397 |
-
st.session_state["vis_params"] = json.loads(
|
398 |
-
vis_params.replace("'", '"')
|
399 |
-
)
|
400 |
-
st.session_state["vis_params"]["palette"] = st.session_state[
|
401 |
-
"palette"
|
402 |
-
]
|
403 |
-
except Exception as e:
|
404 |
-
st.session_state["vis_params"] = None
|
405 |
-
st.error(
|
406 |
-
f"Invalid visualization parameters. It must be a dictionary."
|
407 |
-
)
|
408 |
-
|
409 |
-
elif collection == "MODIS Gap filled Land Surface Temperature Daily":
|
410 |
-
with st.expander("Show dataset details", False):
|
411 |
-
st.markdown(
|
412 |
-
"""
|
413 |
-
See the [Awesome GEE Community Datasets](https://samapriya.github.io/awesome-gee-community-datasets/projects/daily_lst/).
|
414 |
-
"""
|
415 |
-
)
|
416 |
-
|
417 |
-
MODIS_options = ["Daytime (1:30 pm)", "Nighttime (1:30 am)"]
|
418 |
-
MODIS_option = st.selectbox("Select a MODIS dataset:", MODIS_options)
|
419 |
-
if MODIS_option == "Daytime (1:30 pm)":
|
420 |
-
st.session_state["ee_asset_id"] = (
|
421 |
-
"projects/sat-io/open-datasets/gap-filled-lst/gf_day_1km"
|
422 |
-
)
|
423 |
-
else:
|
424 |
-
st.session_state["ee_asset_id"] = (
|
425 |
-
"projects/sat-io/open-datasets/gap-filled-lst/gf_night_1km"
|
426 |
-
)
|
427 |
-
|
428 |
-
palette_options = st.selectbox(
|
429 |
-
"Color palette",
|
430 |
-
cm.list_colormaps(),
|
431 |
-
index=90,
|
432 |
-
)
|
433 |
-
palette_values = cm.get_palette(palette_options, 15)
|
434 |
-
palette = st.text_area(
|
435 |
-
"Enter a custom palette:",
|
436 |
-
palette_values,
|
437 |
-
)
|
438 |
-
st.write(cm.plot_colormap(cmap=palette_options, return_fig=True))
|
439 |
-
st.session_state["palette"] = json.loads(palette.replace("'", '"'))
|
440 |
-
elif collection == "MODIS Ocean Color SMI":
|
441 |
-
with st.expander("Show dataset details", False):
|
442 |
-
st.markdown(
|
443 |
-
"""
|
444 |
-
See the [Earth Engine Data Catalog](https://developers.google.com/earth-engine/datasets/catalog/NASA_OCEANDATA_MODIS-Aqua_L3SMI).
|
445 |
-
"""
|
446 |
-
)
|
447 |
-
|
448 |
-
MODIS_options = ["Aqua", "Terra"]
|
449 |
-
MODIS_option = st.selectbox("Select a satellite:", MODIS_options)
|
450 |
-
st.session_state["ee_asset_id"] = MODIS_option
|
451 |
-
# if MODIS_option == "Daytime (1:30 pm)":
|
452 |
-
# st.session_state[
|
453 |
-
# "ee_asset_id"
|
454 |
-
# ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_day_1km"
|
455 |
-
# else:
|
456 |
-
# st.session_state[
|
457 |
-
# "ee_asset_id"
|
458 |
-
# ] = "projects/sat-io/open-datasets/gap-filled-lst/gf_night_1km"
|
459 |
-
|
460 |
-
band_dict = {
|
461 |
-
"Chlorophyll a concentration": "chlor_a",
|
462 |
-
"Normalized fluorescence line height": "nflh",
|
463 |
-
"Particulate organic carbon": "poc",
|
464 |
-
"Sea surface temperature": "sst",
|
465 |
-
"Remote sensing reflectance at band 412nm": "Rrs_412",
|
466 |
-
"Remote sensing reflectance at band 443nm": "Rrs_443",
|
467 |
-
"Remote sensing reflectance at band 469nm": "Rrs_469",
|
468 |
-
"Remote sensing reflectance at band 488nm": "Rrs_488",
|
469 |
-
"Remote sensing reflectance at band 531nm": "Rrs_531",
|
470 |
-
"Remote sensing reflectance at band 547nm": "Rrs_547",
|
471 |
-
"Remote sensing reflectance at band 555nm": "Rrs_555",
|
472 |
-
"Remote sensing reflectance at band 645nm": "Rrs_645",
|
473 |
-
"Remote sensing reflectance at band 667nm": "Rrs_667",
|
474 |
-
"Remote sensing reflectance at band 678nm": "Rrs_678",
|
475 |
-
}
|
476 |
-
|
477 |
-
band_options = list(band_dict.keys())
|
478 |
-
band = st.selectbox(
|
479 |
-
"Select a band",
|
480 |
-
band_options,
|
481 |
-
band_options.index("Sea surface temperature"),
|
482 |
-
)
|
483 |
-
st.session_state["band"] = band_dict[band]
|
484 |
-
|
485 |
-
colors = cm.list_colormaps()
|
486 |
-
palette_options = st.selectbox(
|
487 |
-
"Color palette",
|
488 |
-
colors,
|
489 |
-
index=colors.index("coolwarm"),
|
490 |
-
)
|
491 |
-
palette_values = cm.get_palette(palette_options, 15)
|
492 |
-
palette = st.text_area(
|
493 |
-
"Enter a custom palette:",
|
494 |
-
palette_values,
|
495 |
-
)
|
496 |
-
st.write(cm.plot_colormap(cmap=palette_options, return_fig=True))
|
497 |
-
st.session_state["palette"] = json.loads(palette.replace("'", '"'))
|
498 |
-
|
499 |
-
sample_roi = st.selectbox(
|
500 |
-
"Select a sample ROI or upload a GeoJSON file:",
|
501 |
-
roi_options,
|
502 |
-
index=0,
|
503 |
-
)
|
504 |
-
|
505 |
-
add_outline = st.checkbox(
|
506 |
-
"Overlay an administrative boundary on timelapse", False
|
507 |
-
)
|
508 |
-
|
509 |
-
if add_outline:
|
510 |
-
|
511 |
-
with st.expander("Customize administrative boundary", True):
|
512 |
-
|
513 |
-
overlay_options = {
|
514 |
-
"User-defined": None,
|
515 |
-
"Continents": "continents",
|
516 |
-
"Countries": "countries",
|
517 |
-
"US States": "us_states",
|
518 |
-
"China": "china",
|
519 |
-
}
|
520 |
-
|
521 |
-
overlay = st.selectbox(
|
522 |
-
"Select an administrative boundary:",
|
523 |
-
list(overlay_options.keys()),
|
524 |
-
index=2,
|
525 |
-
)
|
526 |
-
|
527 |
-
overlay_data = overlay_options[overlay]
|
528 |
-
|
529 |
-
if overlay_data is None:
|
530 |
-
overlay_data = st.text_input(
|
531 |
-
"Enter an HTTP URL to a GeoJSON file or an ee.FeatureCollection asset id:",
|
532 |
-
"https://raw.githubusercontent.com/giswqs/geemap/master/examples/data/countries.geojson",
|
533 |
-
)
|
534 |
-
|
535 |
-
overlay_color = st.color_picker(
|
536 |
-
"Select a color for the administrative boundary:", "#000000"
|
537 |
-
)
|
538 |
-
overlay_width = st.slider(
|
539 |
-
"Select a line width for the administrative boundary:", 1, 20, 1
|
540 |
-
)
|
541 |
-
overlay_opacity = st.slider(
|
542 |
-
"Select an opacity for the administrative boundary:",
|
543 |
-
0.0,
|
544 |
-
1.0,
|
545 |
-
1.0,
|
546 |
-
0.05,
|
547 |
-
)
|
548 |
-
else:
|
549 |
-
overlay_data = None
|
550 |
-
overlay_color = "black"
|
551 |
-
overlay_width = 1
|
552 |
-
overlay_opacity = 1
|
553 |
-
|
554 |
-
with row1_col1:
|
555 |
-
|
556 |
-
with st.expander(
|
557 |
-
"Steps: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Expand this tab to see a demo π"
|
558 |
-
):
|
559 |
-
video_empty = st.empty()
|
560 |
-
|
561 |
-
data = st.file_uploader(
|
562 |
-
"Upload a GeoJSON file to use as an ROI. Customize timelapse parameters and then click the Submit button ππ",
|
563 |
-
type=["geojson", "kml", "zip"],
|
564 |
-
)
|
565 |
-
|
566 |
-
crs = "epsg:4326"
|
567 |
-
if sample_roi == "Uploaded GeoJSON":
|
568 |
-
if data is None:
|
569 |
-
# st.info(
|
570 |
-
# "Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click Submit button"
|
571 |
-
# )
|
572 |
-
if collection in [
|
573 |
-
"Geostationary Operational Environmental Satellites (GOES)",
|
574 |
-
"USDA National Agriculture Imagery Program (NAIP)",
|
575 |
-
] and (not keyword):
|
576 |
-
m.set_center(-100, 40, 3)
|
577 |
-
# else:
|
578 |
-
# m.set_center(4.20, 18.63, zoom=2)
|
579 |
-
else:
|
580 |
-
if collection in [
|
581 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
582 |
-
"Sentinel-2 MSI Surface Reflectance",
|
583 |
-
]:
|
584 |
-
gdf = gpd.GeoDataFrame(
|
585 |
-
index=[0], crs=crs, geometry=[landsat_rois[sample_roi]]
|
586 |
-
)
|
587 |
-
elif (
|
588 |
-
collection
|
589 |
-
== "Geostationary Operational Environmental Satellites (GOES)"
|
590 |
-
):
|
591 |
-
gdf = gpd.GeoDataFrame(
|
592 |
-
index=[0], crs=crs, geometry=[goes_rois[sample_roi]["region"]]
|
593 |
-
)
|
594 |
-
elif collection == "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km":
|
595 |
-
gdf = gpd.GeoDataFrame(
|
596 |
-
index=[0], crs=crs, geometry=[modis_rois[sample_roi]]
|
597 |
-
)
|
598 |
-
|
599 |
-
if sample_roi != "Uploaded GeoJSON":
|
600 |
-
|
601 |
-
if collection in [
|
602 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
603 |
-
"Sentinel-2 MSI Surface Reflectance",
|
604 |
-
]:
|
605 |
-
gdf = gpd.GeoDataFrame(
|
606 |
-
index=[0], crs=crs, geometry=[landsat_rois[sample_roi]]
|
607 |
-
)
|
608 |
-
elif (
|
609 |
-
collection
|
610 |
-
== "Geostationary Operational Environmental Satellites (GOES)"
|
611 |
-
):
|
612 |
-
gdf = gpd.GeoDataFrame(
|
613 |
-
index=[0], crs=crs, geometry=[goes_rois[sample_roi]["region"]]
|
614 |
-
)
|
615 |
-
elif collection in [
|
616 |
-
"MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km",
|
617 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
618 |
-
]:
|
619 |
-
gdf = gpd.GeoDataFrame(
|
620 |
-
index=[0], crs=crs, geometry=[modis_rois[sample_roi]]
|
621 |
-
)
|
622 |
-
elif collection == "MODIS Ocean Color SMI":
|
623 |
-
gdf = gpd.GeoDataFrame(
|
624 |
-
index=[0], crs=crs, geometry=[ocean_rois[sample_roi]]
|
625 |
-
)
|
626 |
-
try:
|
627 |
-
st.session_state["roi"] = geemap.gdf_to_ee(gdf, geodesic=False)
|
628 |
-
except Exception as e:
|
629 |
-
st.error(e)
|
630 |
-
st.error("Please draw another ROI and try again.")
|
631 |
-
return
|
632 |
-
m.add_gdf(gdf, "ROI")
|
633 |
-
|
634 |
-
elif data:
|
635 |
-
gdf = uploaded_file_to_gdf(data)
|
636 |
-
try:
|
637 |
-
st.session_state["roi"] = geemap.gdf_to_ee(gdf, geodesic=False)
|
638 |
-
m.add_gdf(gdf, "ROI")
|
639 |
-
except Exception as e:
|
640 |
-
st.error(e)
|
641 |
-
st.error("Please draw another ROI and try again.")
|
642 |
-
return
|
643 |
-
|
644 |
-
m.to_streamlit(height=600)
|
645 |
-
|
646 |
-
with row1_col2:
|
647 |
-
|
648 |
-
if collection in [
|
649 |
-
"Landsat TM-ETM-OLI Surface Reflectance",
|
650 |
-
"Sentinel-2 MSI Surface Reflectance",
|
651 |
-
]:
|
652 |
-
|
653 |
-
if collection == "Landsat TM-ETM-OLI Surface Reflectance":
|
654 |
-
sensor_start_year = 1984
|
655 |
-
timelapse_title = "Landsat Timelapse"
|
656 |
-
timelapse_speed = 5
|
657 |
-
elif collection == "Sentinel-2 MSI Surface Reflectance":
|
658 |
-
sensor_start_year = 2015
|
659 |
-
timelapse_title = "Sentinel-2 Timelapse"
|
660 |
-
timelapse_speed = 5
|
661 |
-
video_empty.video("https://youtu.be/VVRK_-dEjR4")
|
662 |
-
|
663 |
-
with st.form("submit_landsat_form"):
|
664 |
-
|
665 |
-
roi = None
|
666 |
-
if st.session_state.get("roi") is not None:
|
667 |
-
roi = st.session_state.get("roi")
|
668 |
-
out_gif = geemap.temp_file_path(".gif")
|
669 |
-
|
670 |
-
title = st.text_input(
|
671 |
-
"Enter a title to show on the timelapse: ", timelapse_title
|
672 |
-
)
|
673 |
-
RGB = st.selectbox(
|
674 |
-
"Select an RGB band combination:",
|
675 |
-
[
|
676 |
-
"Red/Green/Blue",
|
677 |
-
"NIR/Red/Green",
|
678 |
-
"SWIR2/SWIR1/NIR",
|
679 |
-
"NIR/SWIR1/Red",
|
680 |
-
"SWIR2/NIR/Red",
|
681 |
-
"SWIR2/SWIR1/Red",
|
682 |
-
"SWIR1/NIR/Blue",
|
683 |
-
"NIR/SWIR1/Blue",
|
684 |
-
"SWIR2/NIR/Green",
|
685 |
-
"SWIR1/NIR/Red",
|
686 |
-
"SWIR2/NIR/SWIR1",
|
687 |
-
"SWIR1/NIR/SWIR2",
|
688 |
-
],
|
689 |
-
index=9,
|
690 |
-
)
|
691 |
-
|
692 |
-
frequency = st.selectbox(
|
693 |
-
"Select a temporal frequency:",
|
694 |
-
["year", "quarter", "month"],
|
695 |
-
index=0,
|
696 |
-
)
|
697 |
-
|
698 |
-
with st.expander("Customize timelapse"):
|
699 |
-
|
700 |
-
speed = st.slider("Frames per second:", 1, 30, timelapse_speed)
|
701 |
-
dimensions = st.slider(
|
702 |
-
"Maximum dimensions (Width*Height) in pixels", 768, 2000, 768
|
703 |
-
)
|
704 |
-
progress_bar_color = st.color_picker(
|
705 |
-
"Progress bar color:", "#0000ff"
|
706 |
-
)
|
707 |
-
years = st.slider(
|
708 |
-
"Start and end year:",
|
709 |
-
sensor_start_year,
|
710 |
-
today.year,
|
711 |
-
(sensor_start_year, today.year),
|
712 |
-
)
|
713 |
-
months = st.slider("Start and end month:", 1, 12, (1, 12))
|
714 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
715 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
716 |
-
apply_fmask = st.checkbox(
|
717 |
-
"Apply fmask (remove clouds, shadows, snow)", True
|
718 |
-
)
|
719 |
-
font_type = st.selectbox(
|
720 |
-
"Select the font type for the title:",
|
721 |
-
["arial.ttf", "alibaba.otf"],
|
722 |
-
index=0,
|
723 |
-
)
|
724 |
-
fading = st.slider(
|
725 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
726 |
-
)
|
727 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
728 |
-
|
729 |
-
empty_text = st.empty()
|
730 |
-
empty_image = st.empty()
|
731 |
-
empty_fire_image = st.empty()
|
732 |
-
empty_video = st.container()
|
733 |
-
submitted = st.form_submit_button("Submit")
|
734 |
-
if submitted:
|
735 |
-
|
736 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
737 |
-
empty_text.warning(
|
738 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
739 |
-
)
|
740 |
-
else:
|
741 |
-
|
742 |
-
empty_text.text("Computing... Please wait...")
|
743 |
-
|
744 |
-
start_year = years[0]
|
745 |
-
end_year = years[1]
|
746 |
-
start_date = str(months[0]).zfill(2) + "-01"
|
747 |
-
end_date = str(months[1]).zfill(2) + "-30"
|
748 |
-
bands = RGB.split("/")
|
749 |
-
|
750 |
-
try:
|
751 |
-
if collection == "Landsat TM-ETM-OLI Surface Reflectance":
|
752 |
-
out_gif = geemap.landsat_timelapse(
|
753 |
-
roi=roi,
|
754 |
-
out_gif=out_gif,
|
755 |
-
start_year=start_year,
|
756 |
-
end_year=end_year,
|
757 |
-
start_date=start_date,
|
758 |
-
end_date=end_date,
|
759 |
-
bands=bands,
|
760 |
-
apply_fmask=apply_fmask,
|
761 |
-
frames_per_second=speed,
|
762 |
-
# dimensions=dimensions,
|
763 |
-
dimensions=768,
|
764 |
-
overlay_data=overlay_data,
|
765 |
-
overlay_color=overlay_color,
|
766 |
-
overlay_width=overlay_width,
|
767 |
-
overlay_opacity=overlay_opacity,
|
768 |
-
frequency=frequency,
|
769 |
-
date_format=None,
|
770 |
-
title=title,
|
771 |
-
title_xy=("2%", "90%"),
|
772 |
-
add_text=True,
|
773 |
-
text_xy=("2%", "2%"),
|
774 |
-
text_sequence=None,
|
775 |
-
font_type=font_type,
|
776 |
-
font_size=font_size,
|
777 |
-
font_color=font_color,
|
778 |
-
add_progress_bar=True,
|
779 |
-
progress_bar_color=progress_bar_color,
|
780 |
-
progress_bar_height=5,
|
781 |
-
loop=0,
|
782 |
-
mp4=mp4,
|
783 |
-
fading=fading,
|
784 |
-
)
|
785 |
-
elif collection == "Sentinel-2 MSI Surface Reflectance":
|
786 |
-
out_gif = geemap.sentinel2_timelapse(
|
787 |
-
roi=roi,
|
788 |
-
out_gif=out_gif,
|
789 |
-
start_year=start_year,
|
790 |
-
end_year=end_year,
|
791 |
-
start_date=start_date,
|
792 |
-
end_date=end_date,
|
793 |
-
bands=bands,
|
794 |
-
apply_fmask=apply_fmask,
|
795 |
-
frames_per_second=speed,
|
796 |
-
dimensions=768,
|
797 |
-
# dimensions=dimensions,
|
798 |
-
overlay_data=overlay_data,
|
799 |
-
overlay_color=overlay_color,
|
800 |
-
overlay_width=overlay_width,
|
801 |
-
overlay_opacity=overlay_opacity,
|
802 |
-
frequency=frequency,
|
803 |
-
date_format=None,
|
804 |
-
title=title,
|
805 |
-
title_xy=("2%", "90%"),
|
806 |
-
add_text=True,
|
807 |
-
text_xy=("2%", "2%"),
|
808 |
-
text_sequence=None,
|
809 |
-
font_type=font_type,
|
810 |
-
font_size=font_size,
|
811 |
-
font_color=font_color,
|
812 |
-
add_progress_bar=True,
|
813 |
-
progress_bar_color=progress_bar_color,
|
814 |
-
progress_bar_height=5,
|
815 |
-
loop=0,
|
816 |
-
mp4=mp4,
|
817 |
-
fading=fading,
|
818 |
-
)
|
819 |
-
except:
|
820 |
-
empty_text.error(
|
821 |
-
"An error occurred while computing the timelapse. Your probably requested too much data. Try reducing the ROI or timespan."
|
822 |
-
)
|
823 |
-
st.stop()
|
824 |
-
|
825 |
-
if out_gif is not None and os.path.exists(out_gif):
|
826 |
-
|
827 |
-
empty_text.text(
|
828 |
-
"Right click the GIF to save it to your computerπ"
|
829 |
-
)
|
830 |
-
empty_image.image(out_gif)
|
831 |
-
|
832 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
833 |
-
if mp4 and os.path.exists(out_mp4):
|
834 |
-
with empty_video:
|
835 |
-
st.text(
|
836 |
-
"Right click the MP4 to save it to your computerπ"
|
837 |
-
)
|
838 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
839 |
-
|
840 |
-
else:
|
841 |
-
empty_text.error(
|
842 |
-
"Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
|
843 |
-
)
|
844 |
-
|
845 |
-
elif collection == "Geostationary Operational Environmental Satellites (GOES)":
|
846 |
-
|
847 |
-
video_empty.video("https://youtu.be/16fA2QORG4A")
|
848 |
-
|
849 |
-
with st.form("submit_goes_form"):
|
850 |
-
|
851 |
-
roi = None
|
852 |
-
if st.session_state.get("roi") is not None:
|
853 |
-
roi = st.session_state.get("roi")
|
854 |
-
out_gif = geemap.temp_file_path(".gif")
|
855 |
-
|
856 |
-
satellite = st.selectbox("Select a satellite:", ["GOES-17", "GOES-16"])
|
857 |
-
earliest_date = datetime.date(2017, 7, 10)
|
858 |
-
latest_date = datetime.date.today()
|
859 |
-
|
860 |
-
if sample_roi == "Uploaded GeoJSON":
|
861 |
-
roi_start_date = today - datetime.timedelta(days=2)
|
862 |
-
roi_end_date = today - datetime.timedelta(days=1)
|
863 |
-
roi_start_time = datetime.time(14, 00)
|
864 |
-
roi_end_time = datetime.time(1, 00)
|
865 |
-
else:
|
866 |
-
roi_start = goes_rois[sample_roi]["start_time"]
|
867 |
-
roi_end = goes_rois[sample_roi]["end_time"]
|
868 |
-
roi_start_date = datetime.datetime.strptime(
|
869 |
-
roi_start[:10], "%Y-%m-%d"
|
870 |
-
)
|
871 |
-
roi_end_date = datetime.datetime.strptime(roi_end[:10], "%Y-%m-%d")
|
872 |
-
roi_start_time = datetime.time(
|
873 |
-
int(roi_start[11:13]), int(roi_start[14:16])
|
874 |
-
)
|
875 |
-
roi_end_time = datetime.time(
|
876 |
-
int(roi_end[11:13]), int(roi_end[14:16])
|
877 |
-
)
|
878 |
-
|
879 |
-
start_date = st.date_input("Select the start date:", roi_start_date)
|
880 |
-
end_date = st.date_input("Select the end date:", roi_end_date)
|
881 |
-
|
882 |
-
with st.expander("Customize timelapse"):
|
883 |
-
|
884 |
-
add_fire = st.checkbox("Add Fire/Hotspot Characterization", False)
|
885 |
-
|
886 |
-
scan_type = st.selectbox(
|
887 |
-
"Select a scan type:", ["Full Disk", "CONUS", "Mesoscale"]
|
888 |
-
)
|
889 |
-
|
890 |
-
start_time = st.time_input(
|
891 |
-
"Select the start time of the start date:", roi_start_time
|
892 |
-
)
|
893 |
-
|
894 |
-
end_time = st.time_input(
|
895 |
-
"Select the end time of the end date:", roi_end_time
|
896 |
-
)
|
897 |
-
|
898 |
-
start = (
|
899 |
-
start_date.strftime("%Y-%m-%d")
|
900 |
-
+ "T"
|
901 |
-
+ start_time.strftime("%H:%M:%S")
|
902 |
-
)
|
903 |
-
end = (
|
904 |
-
end_date.strftime("%Y-%m-%d")
|
905 |
-
+ "T"
|
906 |
-
+ end_time.strftime("%H:%M:%S")
|
907 |
-
)
|
908 |
-
|
909 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
910 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
911 |
-
progress_bar_color = st.color_picker(
|
912 |
-
"Progress bar color:", "#0000ff"
|
913 |
-
)
|
914 |
-
font_size = st.slider("Font size:", 10, 50, 20)
|
915 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
916 |
-
fading = st.slider(
|
917 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
918 |
-
)
|
919 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
920 |
-
|
921 |
-
empty_text = st.empty()
|
922 |
-
empty_image = st.empty()
|
923 |
-
empty_video = st.container()
|
924 |
-
empty_fire_text = st.empty()
|
925 |
-
empty_fire_image = st.empty()
|
926 |
-
|
927 |
-
submitted = st.form_submit_button("Submit")
|
928 |
-
if submitted:
|
929 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
930 |
-
empty_text.warning(
|
931 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
932 |
-
)
|
933 |
-
else:
|
934 |
-
empty_text.text("Computing... Please wait...")
|
935 |
-
|
936 |
-
geemap.goes_timelapse(
|
937 |
-
roi,
|
938 |
-
out_gif,
|
939 |
-
start_date=start,
|
940 |
-
end_date=end,
|
941 |
-
data=satellite,
|
942 |
-
scan=scan_type.replace(" ", "_").lower(),
|
943 |
-
dimensions=768,
|
944 |
-
framesPerSecond=speed,
|
945 |
-
date_format="YYYY-MM-dd HH:mm",
|
946 |
-
xy=("3%", "3%"),
|
947 |
-
text_sequence=None,
|
948 |
-
font_type="arial.ttf",
|
949 |
-
font_size=font_size,
|
950 |
-
font_color=font_color,
|
951 |
-
add_progress_bar=add_progress_bar,
|
952 |
-
progress_bar_color=progress_bar_color,
|
953 |
-
progress_bar_height=5,
|
954 |
-
loop=0,
|
955 |
-
overlay_data=overlay_data,
|
956 |
-
overlay_color=overlay_color,
|
957 |
-
overlay_width=overlay_width,
|
958 |
-
overlay_opacity=overlay_opacity,
|
959 |
-
mp4=mp4,
|
960 |
-
fading=fading,
|
961 |
-
)
|
962 |
-
|
963 |
-
if out_gif is not None and os.path.exists(out_gif):
|
964 |
-
empty_text.text(
|
965 |
-
"Right click the GIF to save it to your computerπ"
|
966 |
-
)
|
967 |
-
empty_image.image(out_gif)
|
968 |
-
|
969 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
970 |
-
if mp4 and os.path.exists(out_mp4):
|
971 |
-
with empty_video:
|
972 |
-
st.text(
|
973 |
-
"Right click the MP4 to save it to your computerπ"
|
974 |
-
)
|
975 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
976 |
-
|
977 |
-
if add_fire:
|
978 |
-
out_fire_gif = geemap.temp_file_path(".gif")
|
979 |
-
empty_fire_text.text(
|
980 |
-
"Delineating Fire Hotspot... Please wait..."
|
981 |
-
)
|
982 |
-
geemap.goes_fire_timelapse(
|
983 |
-
out_fire_gif,
|
984 |
-
start_date=start,
|
985 |
-
end_date=end,
|
986 |
-
data=satellite,
|
987 |
-
scan=scan_type.replace(" ", "_").lower(),
|
988 |
-
region=roi,
|
989 |
-
dimensions=768,
|
990 |
-
framesPerSecond=speed,
|
991 |
-
date_format="YYYY-MM-dd HH:mm",
|
992 |
-
xy=("3%", "3%"),
|
993 |
-
text_sequence=None,
|
994 |
-
font_type="arial.ttf",
|
995 |
-
font_size=font_size,
|
996 |
-
font_color=font_color,
|
997 |
-
add_progress_bar=add_progress_bar,
|
998 |
-
progress_bar_color=progress_bar_color,
|
999 |
-
progress_bar_height=5,
|
1000 |
-
loop=0,
|
1001 |
-
)
|
1002 |
-
if os.path.exists(out_fire_gif):
|
1003 |
-
empty_fire_image.image(out_fire_gif)
|
1004 |
-
else:
|
1005 |
-
empty_text.text(
|
1006 |
-
"Something went wrong, either the ROI is too big or there are no data available for the specified date range. Please try a smaller ROI or different date range."
|
1007 |
-
)
|
1008 |
-
|
1009 |
-
elif collection == "MODIS Vegetation Indices (NDVI/EVI) 16-Day Global 1km":
|
1010 |
-
|
1011 |
-
video_empty.video("https://youtu.be/16fA2QORG4A")
|
1012 |
-
|
1013 |
-
satellite = st.selectbox("Select a satellite:", ["Terra", "Aqua"])
|
1014 |
-
band = st.selectbox("Select a band:", ["NDVI", "EVI"])
|
1015 |
-
|
1016 |
-
with st.form("submit_modis_form"):
|
1017 |
-
|
1018 |
-
roi = None
|
1019 |
-
if st.session_state.get("roi") is not None:
|
1020 |
-
roi = st.session_state.get("roi")
|
1021 |
-
out_gif = geemap.temp_file_path(".gif")
|
1022 |
-
|
1023 |
-
with st.expander("Customize timelapse"):
|
1024 |
-
|
1025 |
-
start = st.date_input(
|
1026 |
-
"Select a start date:", datetime.date(2000, 2, 8)
|
1027 |
-
)
|
1028 |
-
end = st.date_input("Select an end date:", datetime.date.today())
|
1029 |
-
|
1030 |
-
start_date = start.strftime("%Y-%m-%d")
|
1031 |
-
end_date = end.strftime("%Y-%m-%d")
|
1032 |
-
|
1033 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
1034 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
1035 |
-
progress_bar_color = st.color_picker(
|
1036 |
-
"Progress bar color:", "#0000ff"
|
1037 |
-
)
|
1038 |
-
font_size = st.slider("Font size:", 10, 50, 20)
|
1039 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
1040 |
-
|
1041 |
-
font_type = st.selectbox(
|
1042 |
-
"Select the font type for the title:",
|
1043 |
-
["arial.ttf", "alibaba.otf"],
|
1044 |
-
index=0,
|
1045 |
-
)
|
1046 |
-
fading = st.slider(
|
1047 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
1048 |
-
)
|
1049 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
1050 |
-
|
1051 |
-
empty_text = st.empty()
|
1052 |
-
empty_image = st.empty()
|
1053 |
-
empty_video = st.container()
|
1054 |
-
|
1055 |
-
submitted = st.form_submit_button("Submit")
|
1056 |
-
if submitted:
|
1057 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
1058 |
-
empty_text.warning(
|
1059 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
1060 |
-
)
|
1061 |
-
else:
|
1062 |
-
|
1063 |
-
empty_text.text("Computing... Please wait...")
|
1064 |
-
|
1065 |
-
geemap.modis_ndvi_timelapse(
|
1066 |
-
roi,
|
1067 |
-
out_gif,
|
1068 |
-
satellite,
|
1069 |
-
band,
|
1070 |
-
start_date,
|
1071 |
-
end_date,
|
1072 |
-
768,
|
1073 |
-
speed,
|
1074 |
-
overlay_data=overlay_data,
|
1075 |
-
overlay_color=overlay_color,
|
1076 |
-
overlay_width=overlay_width,
|
1077 |
-
overlay_opacity=overlay_opacity,
|
1078 |
-
mp4=mp4,
|
1079 |
-
fading=fading,
|
1080 |
-
)
|
1081 |
-
|
1082 |
-
geemap.reduce_gif_size(out_gif)
|
1083 |
-
|
1084 |
-
empty_text.text(
|
1085 |
-
"Right click the GIF to save it to your computerπ"
|
1086 |
-
)
|
1087 |
-
empty_image.image(out_gif)
|
1088 |
-
|
1089 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1090 |
-
if mp4 and os.path.exists(out_mp4):
|
1091 |
-
with empty_video:
|
1092 |
-
st.text(
|
1093 |
-
"Right click the MP4 to save it to your computerπ"
|
1094 |
-
)
|
1095 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1096 |
-
|
1097 |
-
elif collection == "Any Earth Engine ImageCollection":
|
1098 |
-
|
1099 |
-
with st.form("submit_ts_form"):
|
1100 |
-
with st.expander("Customize timelapse"):
|
1101 |
-
|
1102 |
-
title = st.text_input(
|
1103 |
-
"Enter a title to show on the timelapse: ", "Timelapse"
|
1104 |
-
)
|
1105 |
-
start_date = st.date_input(
|
1106 |
-
"Select the start date:", datetime.date(2020, 1, 1)
|
1107 |
-
)
|
1108 |
-
end_date = st.date_input(
|
1109 |
-
"Select the end date:", datetime.date.today()
|
1110 |
-
)
|
1111 |
-
frequency = st.selectbox(
|
1112 |
-
"Select a temporal frequency:",
|
1113 |
-
["year", "quarter", "month", "day", "hour", "minute", "second"],
|
1114 |
-
index=0,
|
1115 |
-
)
|
1116 |
-
reducer = st.selectbox(
|
1117 |
-
"Select a reducer for aggregating data:",
|
1118 |
-
["median", "mean", "min", "max", "sum", "variance", "stdDev"],
|
1119 |
-
index=0,
|
1120 |
-
)
|
1121 |
-
data_format = st.selectbox(
|
1122 |
-
"Select a date format to show on the timelapse:",
|
1123 |
-
[
|
1124 |
-
"YYYY-MM-dd",
|
1125 |
-
"YYYY",
|
1126 |
-
"YYMM-MM",
|
1127 |
-
"YYYY-MM-dd HH:mm",
|
1128 |
-
"YYYY-MM-dd HH:mm:ss",
|
1129 |
-
"HH:mm",
|
1130 |
-
"HH:mm:ss",
|
1131 |
-
"w",
|
1132 |
-
"M",
|
1133 |
-
"d",
|
1134 |
-
"D",
|
1135 |
-
],
|
1136 |
-
index=0,
|
1137 |
-
)
|
1138 |
-
|
1139 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
1140 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
1141 |
-
progress_bar_color = st.color_picker(
|
1142 |
-
"Progress bar color:", "#0000ff"
|
1143 |
-
)
|
1144 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
1145 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
1146 |
-
font_type = st.selectbox(
|
1147 |
-
"Select the font type for the title:",
|
1148 |
-
["arial.ttf", "alibaba.otf"],
|
1149 |
-
index=0,
|
1150 |
-
)
|
1151 |
-
fading = st.slider(
|
1152 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
1153 |
-
)
|
1154 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
1155 |
-
|
1156 |
-
empty_text = st.empty()
|
1157 |
-
empty_image = st.empty()
|
1158 |
-
empty_video = st.container()
|
1159 |
-
empty_fire_image = st.empty()
|
1160 |
-
|
1161 |
-
roi = None
|
1162 |
-
if st.session_state.get("roi") is not None:
|
1163 |
-
roi = st.session_state.get("roi")
|
1164 |
-
out_gif = geemap.temp_file_path(".gif")
|
1165 |
-
|
1166 |
-
submitted = st.form_submit_button("Submit")
|
1167 |
-
if submitted:
|
1168 |
-
|
1169 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
1170 |
-
empty_text.warning(
|
1171 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
1172 |
-
)
|
1173 |
-
else:
|
1174 |
-
|
1175 |
-
empty_text.text("Computing... Please wait...")
|
1176 |
-
try:
|
1177 |
-
geemap.create_timelapse(
|
1178 |
-
st.session_state.get("ee_asset_id"),
|
1179 |
-
start_date=start_date.strftime("%Y-%m-%d"),
|
1180 |
-
end_date=end_date.strftime("%Y-%m-%d"),
|
1181 |
-
region=roi,
|
1182 |
-
frequency=frequency,
|
1183 |
-
reducer=reducer,
|
1184 |
-
date_format=data_format,
|
1185 |
-
out_gif=out_gif,
|
1186 |
-
bands=st.session_state.get("bands"),
|
1187 |
-
palette=st.session_state.get("palette"),
|
1188 |
-
vis_params=st.session_state.get("vis_params"),
|
1189 |
-
dimensions=768,
|
1190 |
-
frames_per_second=speed,
|
1191 |
-
crs="EPSG:3857",
|
1192 |
-
overlay_data=overlay_data,
|
1193 |
-
overlay_color=overlay_color,
|
1194 |
-
overlay_width=overlay_width,
|
1195 |
-
overlay_opacity=overlay_opacity,
|
1196 |
-
title=title,
|
1197 |
-
title_xy=("2%", "90%"),
|
1198 |
-
add_text=True,
|
1199 |
-
text_xy=("2%", "2%"),
|
1200 |
-
text_sequence=None,
|
1201 |
-
font_type=font_type,
|
1202 |
-
font_size=font_size,
|
1203 |
-
font_color=font_color,
|
1204 |
-
add_progress_bar=add_progress_bar,
|
1205 |
-
progress_bar_color=progress_bar_color,
|
1206 |
-
progress_bar_height=5,
|
1207 |
-
loop=0,
|
1208 |
-
mp4=mp4,
|
1209 |
-
fading=fading,
|
1210 |
-
)
|
1211 |
-
except:
|
1212 |
-
empty_text.error(
|
1213 |
-
"An error occurred while computing the timelapse. You probably requested too much data. Try reducing the ROI or timespan."
|
1214 |
-
)
|
1215 |
-
|
1216 |
-
empty_text.text(
|
1217 |
-
"Right click the GIF to save it to your computerπ"
|
1218 |
-
)
|
1219 |
-
empty_image.image(out_gif)
|
1220 |
-
|
1221 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1222 |
-
if mp4 and os.path.exists(out_mp4):
|
1223 |
-
with empty_video:
|
1224 |
-
st.text(
|
1225 |
-
"Right click the MP4 to save it to your computerπ"
|
1226 |
-
)
|
1227 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1228 |
-
|
1229 |
-
elif collection in [
|
1230 |
-
"MODIS Gap filled Land Surface Temperature Daily",
|
1231 |
-
"MODIS Ocean Color SMI",
|
1232 |
-
]:
|
1233 |
-
|
1234 |
-
with st.form("submit_ts_form"):
|
1235 |
-
with st.expander("Customize timelapse"):
|
1236 |
-
|
1237 |
-
title = st.text_input(
|
1238 |
-
"Enter a title to show on the timelapse: ",
|
1239 |
-
"Surface Temperature",
|
1240 |
-
)
|
1241 |
-
start_date = st.date_input(
|
1242 |
-
"Select the start date:", datetime.date(2018, 1, 1)
|
1243 |
-
)
|
1244 |
-
end_date = st.date_input(
|
1245 |
-
"Select the end date:", datetime.date(2020, 12, 31)
|
1246 |
-
)
|
1247 |
-
frequency = st.selectbox(
|
1248 |
-
"Select a temporal frequency:",
|
1249 |
-
["year", "quarter", "month", "week", "day"],
|
1250 |
-
index=2,
|
1251 |
-
)
|
1252 |
-
reducer = st.selectbox(
|
1253 |
-
"Select a reducer for aggregating data:",
|
1254 |
-
["median", "mean", "min", "max", "sum", "variance", "stdDev"],
|
1255 |
-
index=0,
|
1256 |
-
)
|
1257 |
-
|
1258 |
-
vis_params = st.text_area(
|
1259 |
-
"Enter visualization parameters",
|
1260 |
-
"",
|
1261 |
-
help="Enter a string in the format of a dictionary, such as '{'min': 23, 'max': 32}'",
|
1262 |
-
)
|
1263 |
-
|
1264 |
-
speed = st.slider("Frames per second:", 1, 30, 5)
|
1265 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
1266 |
-
progress_bar_color = st.color_picker(
|
1267 |
-
"Progress bar color:", "#0000ff"
|
1268 |
-
)
|
1269 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
1270 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
1271 |
-
font_type = st.selectbox(
|
1272 |
-
"Select the font type for the title:",
|
1273 |
-
["arial.ttf", "alibaba.otf"],
|
1274 |
-
index=0,
|
1275 |
-
)
|
1276 |
-
add_colorbar = st.checkbox("Add a colorbar", True)
|
1277 |
-
colorbar_label = st.text_input(
|
1278 |
-
"Enter the colorbar label:", "Surface Temperature (Β°C)"
|
1279 |
-
)
|
1280 |
-
fading = st.slider(
|
1281 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
1282 |
-
)
|
1283 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
1284 |
-
|
1285 |
-
empty_text = st.empty()
|
1286 |
-
empty_image = st.empty()
|
1287 |
-
empty_video = st.container()
|
1288 |
-
|
1289 |
-
roi = None
|
1290 |
-
if st.session_state.get("roi") is not None:
|
1291 |
-
roi = st.session_state.get("roi")
|
1292 |
-
out_gif = geemap.temp_file_path(".gif")
|
1293 |
-
|
1294 |
-
submitted = st.form_submit_button("Submit")
|
1295 |
-
if submitted:
|
1296 |
-
|
1297 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
1298 |
-
empty_text.warning(
|
1299 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
1300 |
-
)
|
1301 |
-
else:
|
1302 |
-
|
1303 |
-
empty_text.text("Computing... Please wait...")
|
1304 |
-
try:
|
1305 |
-
if (
|
1306 |
-
collection
|
1307 |
-
== "MODIS Gap filled Land Surface Temperature Daily"
|
1308 |
-
):
|
1309 |
-
out_gif = geemap.create_timelapse(
|
1310 |
-
st.session_state.get("ee_asset_id"),
|
1311 |
-
start_date=start_date.strftime("%Y-%m-%d"),
|
1312 |
-
end_date=end_date.strftime("%Y-%m-%d"),
|
1313 |
-
region=roi,
|
1314 |
-
bands=None,
|
1315 |
-
frequency=frequency,
|
1316 |
-
reducer=reducer,
|
1317 |
-
date_format=None,
|
1318 |
-
out_gif=out_gif,
|
1319 |
-
palette=st.session_state.get("palette"),
|
1320 |
-
vis_params=None,
|
1321 |
-
dimensions=768,
|
1322 |
-
frames_per_second=speed,
|
1323 |
-
crs="EPSG:3857",
|
1324 |
-
overlay_data=overlay_data,
|
1325 |
-
overlay_color=overlay_color,
|
1326 |
-
overlay_width=overlay_width,
|
1327 |
-
overlay_opacity=overlay_opacity,
|
1328 |
-
title=title,
|
1329 |
-
title_xy=("2%", "90%"),
|
1330 |
-
add_text=True,
|
1331 |
-
text_xy=("2%", "2%"),
|
1332 |
-
text_sequence=None,
|
1333 |
-
font_type=font_type,
|
1334 |
-
font_size=font_size,
|
1335 |
-
font_color=font_color,
|
1336 |
-
add_progress_bar=add_progress_bar,
|
1337 |
-
progress_bar_color=progress_bar_color,
|
1338 |
-
progress_bar_height=5,
|
1339 |
-
add_colorbar=add_colorbar,
|
1340 |
-
colorbar_label=colorbar_label,
|
1341 |
-
loop=0,
|
1342 |
-
mp4=mp4,
|
1343 |
-
fading=fading,
|
1344 |
-
)
|
1345 |
-
elif collection == "MODIS Ocean Color SMI":
|
1346 |
-
if vis_params.startswith("{") and vis_params.endswith(
|
1347 |
-
"}"
|
1348 |
-
):
|
1349 |
-
vis_params = json.loads(
|
1350 |
-
vis_params.replace("'", '"')
|
1351 |
-
)
|
1352 |
-
else:
|
1353 |
-
vis_params = None
|
1354 |
-
out_gif = geemap.modis_ocean_color_timelapse(
|
1355 |
-
st.session_state.get("ee_asset_id"),
|
1356 |
-
start_date=start_date.strftime("%Y-%m-%d"),
|
1357 |
-
end_date=end_date.strftime("%Y-%m-%d"),
|
1358 |
-
region=roi,
|
1359 |
-
bands=st.session_state["band"],
|
1360 |
-
frequency=frequency,
|
1361 |
-
reducer=reducer,
|
1362 |
-
date_format=None,
|
1363 |
-
out_gif=out_gif,
|
1364 |
-
palette=st.session_state.get("palette"),
|
1365 |
-
vis_params=vis_params,
|
1366 |
-
dimensions=768,
|
1367 |
-
frames_per_second=speed,
|
1368 |
-
crs="EPSG:3857",
|
1369 |
-
overlay_data=overlay_data,
|
1370 |
-
overlay_color=overlay_color,
|
1371 |
-
overlay_width=overlay_width,
|
1372 |
-
overlay_opacity=overlay_opacity,
|
1373 |
-
title=title,
|
1374 |
-
title_xy=("2%", "90%"),
|
1375 |
-
add_text=True,
|
1376 |
-
text_xy=("2%", "2%"),
|
1377 |
-
text_sequence=None,
|
1378 |
-
font_type=font_type,
|
1379 |
-
font_size=font_size,
|
1380 |
-
font_color=font_color,
|
1381 |
-
add_progress_bar=add_progress_bar,
|
1382 |
-
progress_bar_color=progress_bar_color,
|
1383 |
-
progress_bar_height=5,
|
1384 |
-
add_colorbar=add_colorbar,
|
1385 |
-
colorbar_label=colorbar_label,
|
1386 |
-
loop=0,
|
1387 |
-
mp4=mp4,
|
1388 |
-
fading=fading,
|
1389 |
-
)
|
1390 |
-
except:
|
1391 |
-
empty_text.error(
|
1392 |
-
"Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
|
1393 |
-
)
|
1394 |
-
|
1395 |
-
if out_gif is not None and os.path.exists(out_gif):
|
1396 |
-
|
1397 |
-
geemap.reduce_gif_size(out_gif)
|
1398 |
-
|
1399 |
-
empty_text.text(
|
1400 |
-
"Right click the GIF to save it to your computerπ"
|
1401 |
-
)
|
1402 |
-
empty_image.image(out_gif)
|
1403 |
-
|
1404 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1405 |
-
if mp4 and os.path.exists(out_mp4):
|
1406 |
-
with empty_video:
|
1407 |
-
st.text(
|
1408 |
-
"Right click the MP4 to save it to your computerπ"
|
1409 |
-
)
|
1410 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1411 |
-
|
1412 |
-
else:
|
1413 |
-
st.error(
|
1414 |
-
"Something went wrong. You probably requested too much data. Try reducing the ROI or timespan."
|
1415 |
-
)
|
1416 |
-
|
1417 |
-
elif collection == "USDA National Agriculture Imagery Program (NAIP)":
|
1418 |
-
|
1419 |
-
with st.form("submit_naip_form"):
|
1420 |
-
with st.expander("Customize timelapse"):
|
1421 |
-
|
1422 |
-
title = st.text_input(
|
1423 |
-
"Enter a title to show on the timelapse: ", "NAIP Timelapse"
|
1424 |
-
)
|
1425 |
-
|
1426 |
-
years = st.slider(
|
1427 |
-
"Start and end year:",
|
1428 |
-
2003,
|
1429 |
-
today.year,
|
1430 |
-
(2003, today.year),
|
1431 |
-
)
|
1432 |
-
|
1433 |
-
bands = st.selectbox(
|
1434 |
-
"Select a band combination:", ["N/R/G", "R/G/B"], index=0
|
1435 |
-
)
|
1436 |
-
|
1437 |
-
speed = st.slider("Frames per second:", 1, 30, 3)
|
1438 |
-
add_progress_bar = st.checkbox("Add a progress bar", True)
|
1439 |
-
progress_bar_color = st.color_picker(
|
1440 |
-
"Progress bar color:", "#0000ff"
|
1441 |
-
)
|
1442 |
-
font_size = st.slider("Font size:", 10, 50, 30)
|
1443 |
-
font_color = st.color_picker("Font color:", "#ffffff")
|
1444 |
-
font_type = st.selectbox(
|
1445 |
-
"Select the font type for the title:",
|
1446 |
-
["arial.ttf", "alibaba.otf"],
|
1447 |
-
index=0,
|
1448 |
-
)
|
1449 |
-
fading = st.slider(
|
1450 |
-
"Fading duration (seconds) for each frame:", 0.0, 3.0, 0.0
|
1451 |
-
)
|
1452 |
-
mp4 = st.checkbox("Save timelapse as MP4", True)
|
1453 |
-
|
1454 |
-
empty_text = st.empty()
|
1455 |
-
empty_image = st.empty()
|
1456 |
-
empty_video = st.container()
|
1457 |
-
empty_fire_image = st.empty()
|
1458 |
-
|
1459 |
-
roi = None
|
1460 |
-
if st.session_state.get("roi") is not None:
|
1461 |
-
roi = st.session_state.get("roi")
|
1462 |
-
out_gif = geemap.temp_file_path(".gif")
|
1463 |
-
|
1464 |
-
submitted = st.form_submit_button("Submit")
|
1465 |
-
if submitted:
|
1466 |
-
|
1467 |
-
if sample_roi == "Uploaded GeoJSON" and data is None:
|
1468 |
-
empty_text.warning(
|
1469 |
-
"Steps to create a timelapse: Draw a rectangle on the map -> Export it as a GeoJSON -> Upload it back to the app -> Click the Submit button. Alternatively, you can select a sample ROI from the dropdown list."
|
1470 |
-
)
|
1471 |
-
else:
|
1472 |
-
|
1473 |
-
empty_text.text("Computing... Please wait...")
|
1474 |
-
try:
|
1475 |
-
geemap.naip_timelapse(
|
1476 |
-
roi,
|
1477 |
-
years[0],
|
1478 |
-
years[1],
|
1479 |
-
out_gif,
|
1480 |
-
bands=bands.split("/"),
|
1481 |
-
palette=st.session_state.get("palette"),
|
1482 |
-
vis_params=None,
|
1483 |
-
dimensions=768,
|
1484 |
-
frames_per_second=speed,
|
1485 |
-
crs="EPSG:3857",
|
1486 |
-
overlay_data=overlay_data,
|
1487 |
-
overlay_color=overlay_color,
|
1488 |
-
overlay_width=overlay_width,
|
1489 |
-
overlay_opacity=overlay_opacity,
|
1490 |
-
title=title,
|
1491 |
-
title_xy=("2%", "90%"),
|
1492 |
-
add_text=True,
|
1493 |
-
text_xy=("2%", "2%"),
|
1494 |
-
text_sequence=None,
|
1495 |
-
font_type=font_type,
|
1496 |
-
font_size=font_size,
|
1497 |
-
font_color=font_color,
|
1498 |
-
add_progress_bar=add_progress_bar,
|
1499 |
-
progress_bar_color=progress_bar_color,
|
1500 |
-
progress_bar_height=5,
|
1501 |
-
loop=0,
|
1502 |
-
mp4=mp4,
|
1503 |
-
fading=fading,
|
1504 |
-
)
|
1505 |
-
except:
|
1506 |
-
empty_text.error(
|
1507 |
-
"Something went wrong. You either requested too much data or the ROI is outside the U.S."
|
1508 |
-
)
|
1509 |
-
|
1510 |
-
if out_gif is not None and os.path.exists(out_gif):
|
1511 |
-
|
1512 |
-
empty_text.text(
|
1513 |
-
"Right click the GIF to save it to your computerπ"
|
1514 |
-
)
|
1515 |
-
empty_image.image(out_gif)
|
1516 |
-
|
1517 |
-
out_mp4 = out_gif.replace(".gif", ".mp4")
|
1518 |
-
if mp4 and os.path.exists(out_mp4):
|
1519 |
-
with empty_video:
|
1520 |
-
st.text(
|
1521 |
-
"Right click the MP4 to save it to your computerπ"
|
1522 |
-
)
|
1523 |
-
st.video(out_gif.replace(".gif", ".mp4"))
|
1524 |
-
|
1525 |
-
else:
|
1526 |
-
st.error(
|
1527 |
-
"Something went wrong. You either requested too much data or the ROI is outside the U.S."
|
1528 |
-
)
|
1529 |
-
|
1530 |
-
|
1531 |
-
try:
|
1532 |
-
app()
|
1533 |
-
except Exception as e:
|
1534 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/3_πͺ_Split_Map.py
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import leafmap.foliumap as leafmap
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
st.sidebar.info(
|
7 |
-
"""
|
8 |
-
- Web App URL: <https://streamlit.gishub.org>
|
9 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
10 |
-
"""
|
11 |
-
)
|
12 |
-
|
13 |
-
st.sidebar.title("Contact")
|
14 |
-
st.sidebar.info(
|
15 |
-
"""
|
16 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
17 |
-
"""
|
18 |
-
)
|
19 |
-
|
20 |
-
st.title("Split-panel Map")
|
21 |
-
|
22 |
-
with st.expander("See source code"):
|
23 |
-
with st.echo():
|
24 |
-
m = leafmap.Map()
|
25 |
-
m.split_map(
|
26 |
-
left_layer="ESA WorldCover 2020 S2 FCC", right_layer="ESA WorldCover 2020"
|
27 |
-
)
|
28 |
-
m.add_legend(title="ESA Land Cover", builtin_legend="ESA_WorldCover")
|
29 |
-
|
30 |
-
m.to_streamlit(height=700)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/4_π₯_Heatmap.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import leafmap.foliumap as leafmap
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
st.sidebar.info(
|
7 |
-
"""
|
8 |
-
- Web App URL: <https://streamlit.gishub.org>
|
9 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
10 |
-
"""
|
11 |
-
)
|
12 |
-
|
13 |
-
st.sidebar.title("Contact")
|
14 |
-
st.sidebar.info(
|
15 |
-
"""
|
16 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
17 |
-
"""
|
18 |
-
)
|
19 |
-
|
20 |
-
st.title("Heatmap")
|
21 |
-
|
22 |
-
with st.expander("See source code"):
|
23 |
-
with st.echo():
|
24 |
-
filepath = "https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/us_cities.csv"
|
25 |
-
m = leafmap.Map(center=[40, -100], zoom=4)
|
26 |
-
m.add_heatmap(
|
27 |
-
filepath,
|
28 |
-
latitude="latitude",
|
29 |
-
longitude="longitude",
|
30 |
-
value="pop_max",
|
31 |
-
name="Heat map",
|
32 |
-
radius=20,
|
33 |
-
)
|
34 |
-
m.to_streamlit(height=700)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/5_π_Marker_Cluster.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import leafmap.foliumap as leafmap
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
st.sidebar.info(
|
7 |
-
"""
|
8 |
-
- Web App URL: <https://streamlit.gishub.org>
|
9 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
10 |
-
"""
|
11 |
-
)
|
12 |
-
|
13 |
-
st.sidebar.title("Contact")
|
14 |
-
st.sidebar.info(
|
15 |
-
"""
|
16 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
17 |
-
"""
|
18 |
-
)
|
19 |
-
|
20 |
-
st.title("Marker Cluster")
|
21 |
-
|
22 |
-
with st.expander("See source code"):
|
23 |
-
with st.echo():
|
24 |
-
|
25 |
-
m = leafmap.Map(center=[40, -100], zoom=4)
|
26 |
-
cities = "https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/us_cities.csv"
|
27 |
-
regions = "https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/us_regions.geojson"
|
28 |
-
|
29 |
-
m.add_geojson(regions, layer_name="US Regions")
|
30 |
-
m.add_points_from_xy(
|
31 |
-
cities,
|
32 |
-
x="longitude",
|
33 |
-
y="latitude",
|
34 |
-
color_column="region",
|
35 |
-
icon_names=["gear", "map", "leaf", "globe"],
|
36 |
-
spin=True,
|
37 |
-
add_legend=True,
|
38 |
-
)
|
39 |
-
|
40 |
-
m.to_streamlit(height=700)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/6_πΊοΈ_Basemaps.py
DELETED
@@ -1,62 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import leafmap.foliumap as leafmap
|
3 |
-
|
4 |
-
st.set_page_config(layout="wide")
|
5 |
-
|
6 |
-
st.sidebar.info(
|
7 |
-
"""
|
8 |
-
- Web App URL: <https://streamlit.gishub.org>
|
9 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
10 |
-
"""
|
11 |
-
)
|
12 |
-
|
13 |
-
st.sidebar.title("Contact")
|
14 |
-
st.sidebar.info(
|
15 |
-
"""
|
16 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
17 |
-
"""
|
18 |
-
)
|
19 |
-
|
20 |
-
|
21 |
-
def app():
|
22 |
-
st.title("Search Basemaps")
|
23 |
-
st.markdown(
|
24 |
-
"""
|
25 |
-
This app is a demonstration of searching and loading basemaps from [xyzservices](https://github.com/geopandas/xyzservices) and [Quick Map Services (QMS)](https://github.com/nextgis/quickmapservices). Selecting from 1000+ basemaps with a few clicks.
|
26 |
-
"""
|
27 |
-
)
|
28 |
-
|
29 |
-
with st.expander("See demo"):
|
30 |
-
st.image("https://i.imgur.com/0SkUhZh.gif")
|
31 |
-
|
32 |
-
row1_col1, row1_col2 = st.columns([3, 1])
|
33 |
-
width = 800
|
34 |
-
height = 600
|
35 |
-
tiles = None
|
36 |
-
|
37 |
-
with row1_col2:
|
38 |
-
|
39 |
-
checkbox = st.checkbox("Search Quick Map Services (QMS)")
|
40 |
-
keyword = st.text_input("Enter a keyword to search and press Enter:")
|
41 |
-
empty = st.empty()
|
42 |
-
|
43 |
-
if keyword:
|
44 |
-
options = leafmap.search_xyz_services(keyword=keyword)
|
45 |
-
if checkbox:
|
46 |
-
qms = leafmap.search_qms(keyword=keyword)
|
47 |
-
if qms is not None:
|
48 |
-
options = options + qms
|
49 |
-
|
50 |
-
tiles = empty.multiselect("Select XYZ tiles to add to the map:", options)
|
51 |
-
|
52 |
-
with row1_col1:
|
53 |
-
m = leafmap.Map()
|
54 |
-
|
55 |
-
if tiles is not None:
|
56 |
-
for tile in tiles:
|
57 |
-
m.add_xyz_service(tile)
|
58 |
-
|
59 |
-
m.to_streamlit(height=height)
|
60 |
-
|
61 |
-
|
62 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/7_π¦_Web_Map_Service.py
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
import ast
|
2 |
-
import json
|
3 |
-
import streamlit as st
|
4 |
-
import leafmap.foliumap as leafmap
|
5 |
-
|
6 |
-
st.set_page_config(layout="wide")
|
7 |
-
|
8 |
-
st.sidebar.info(
|
9 |
-
"""
|
10 |
-
- Web App URL: <https://streamlit.gishub.org>
|
11 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
12 |
-
"""
|
13 |
-
)
|
14 |
-
|
15 |
-
st.sidebar.title("Contact")
|
16 |
-
st.sidebar.info(
|
17 |
-
"""
|
18 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
19 |
-
"""
|
20 |
-
)
|
21 |
-
|
22 |
-
# Define a whitelist of trusted URLs
|
23 |
-
trusted_urls = [
|
24 |
-
"https://services.terrascope.be/wms/v2",
|
25 |
-
# Add more trusted URLs here
|
26 |
-
]
|
27 |
-
|
28 |
-
|
29 |
-
@st.cache_data
|
30 |
-
def get_layers(url):
|
31 |
-
options = leafmap.get_wms_layers(url)
|
32 |
-
return options
|
33 |
-
|
34 |
-
|
35 |
-
def is_trusted_url(url):
|
36 |
-
return url in trusted_urls
|
37 |
-
|
38 |
-
|
39 |
-
def app():
|
40 |
-
st.title("Web Map Service (WMS)")
|
41 |
-
st.markdown(
|
42 |
-
"""
|
43 |
-
This app is a demonstration of loading Web Map Service (WMS) layers. Simply enter the URL of the WMS service
|
44 |
-
in the text box below and press Enter to retrieve the layers. Go to https://apps.nationalmap.gov/services to find
|
45 |
-
some WMS URLs if needed.
|
46 |
-
"""
|
47 |
-
)
|
48 |
-
|
49 |
-
row1_col1, row1_col2 = st.columns([3, 1.3])
|
50 |
-
width = 800
|
51 |
-
height = 600
|
52 |
-
layers = None
|
53 |
-
|
54 |
-
with row1_col2:
|
55 |
-
|
56 |
-
esa_landcover = "https://services.terrascope.be/wms/v2"
|
57 |
-
url = st.text_input(
|
58 |
-
"Enter a WMS URL:", value="https://services.terrascope.be/wms/v2"
|
59 |
-
)
|
60 |
-
empty = st.empty()
|
61 |
-
|
62 |
-
if url:
|
63 |
-
|
64 |
-
if is_trusted_url(url):
|
65 |
-
options = get_layers(url)
|
66 |
-
# Process options as needed
|
67 |
-
else:
|
68 |
-
st.error(
|
69 |
-
"The entered URL is not trusted. Please enter a valid WMS URL."
|
70 |
-
)
|
71 |
-
|
72 |
-
default = None
|
73 |
-
if url == esa_landcover:
|
74 |
-
default = "WORLDCOVER_2020_MAP"
|
75 |
-
layers = empty.multiselect(
|
76 |
-
"Select WMS layers to add to the map:", options, default=default
|
77 |
-
)
|
78 |
-
add_legend = st.checkbox("Add a legend to the map", value=True)
|
79 |
-
if default == "WORLDCOVER_2020_MAP":
|
80 |
-
legend = str(leafmap.builtin_legends["ESA_WorldCover"])
|
81 |
-
else:
|
82 |
-
legend = ""
|
83 |
-
if add_legend:
|
84 |
-
legend_text = st.text_area(
|
85 |
-
"Enter a legend as a dictionary {label: color}",
|
86 |
-
value=legend,
|
87 |
-
height=200,
|
88 |
-
)
|
89 |
-
|
90 |
-
with row1_col1:
|
91 |
-
m = leafmap.Map(center=(36.3, 0), zoom=2)
|
92 |
-
|
93 |
-
if layers is not None:
|
94 |
-
for layer in layers:
|
95 |
-
m.add_wms_layer(
|
96 |
-
url, layers=layer, name=layer, attribution=" ", transparent=True
|
97 |
-
)
|
98 |
-
if add_legend and legend_text:
|
99 |
-
legend_dict = json.loads(legend_text.replace("'", '"'))
|
100 |
-
m.add_legend(legend_dict=legend_dict)
|
101 |
-
|
102 |
-
m.to_streamlit(height=height)
|
103 |
-
|
104 |
-
|
105 |
-
app()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pages/8_ποΈ_Raster_Data_Visualization.py
DELETED
@@ -1,117 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import os
|
3 |
-
import leafmap.foliumap as leafmap
|
4 |
-
import leafmap.colormaps as cm
|
5 |
-
import streamlit as st
|
6 |
-
|
7 |
-
st.set_page_config(layout="wide")
|
8 |
-
|
9 |
-
st.sidebar.info(
|
10 |
-
"""
|
11 |
-
- Web App URL: <https://streamlit.gishub.org>
|
12 |
-
- GitHub repository: <https://github.com/giswqs/streamlit-geospatial>
|
13 |
-
"""
|
14 |
-
)
|
15 |
-
|
16 |
-
st.sidebar.title("Contact")
|
17 |
-
st.sidebar.info(
|
18 |
-
"""
|
19 |
-
Qiusheng Wu at [wetlands.io](https://wetlands.io) | [GitHub](https://github.com/giswqs) | [Twitter](https://twitter.com/giswqs) | [YouTube](https://www.youtube.com/c/QiushengWu) | [LinkedIn](https://www.linkedin.com/in/qiushengwu)
|
20 |
-
"""
|
21 |
-
)
|
22 |
-
|
23 |
-
|
24 |
-
@st.cache_data
|
25 |
-
def load_cog_list():
|
26 |
-
print(os.getcwd())
|
27 |
-
in_txt = os.path.join(os.getcwd(), "data/cog_files.txt")
|
28 |
-
with open(in_txt) as f:
|
29 |
-
return [line.strip() for line in f.readlines()[1:]]
|
30 |
-
|
31 |
-
|
32 |
-
@st.cache_data
|
33 |
-
def get_palettes():
|
34 |
-
return list(cm.palettes.keys())
|
35 |
-
# palettes = dir(palettable.matplotlib)[:-16]
|
36 |
-
# return ["matplotlib." + p for p in palettes]
|
37 |
-
|
38 |
-
|
39 |
-
st.title("Visualize Raster Datasets")
|
40 |
-
st.markdown(
|
41 |
-
"""
|
42 |
-
An interactive web app for visualizing local raster datasets and Cloud Optimized GeoTIFF ([COG](https://www.cogeo.org)). The app was built using [streamlit](https://streamlit.io), [leafmap](https://leafmap.org), and [Titiler](https://developmentseed.org/titiler/).
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
)
|
47 |
-
|
48 |
-
|
49 |
-
def is_trusted_url(url):
|
50 |
-
if url.startswith("https://opendata.digitalglobe.com/events/california-fire-2020/"):
|
51 |
-
return True
|
52 |
-
else:
|
53 |
-
return False
|
54 |
-
|
55 |
-
|
56 |
-
row1_col1, row1_col2 = st.columns([2, 1])
|
57 |
-
|
58 |
-
with row1_col1:
|
59 |
-
cog_list = load_cog_list()
|
60 |
-
cog = st.selectbox("Select a sample Cloud Opitmized GeoTIFF (COG)", cog_list)
|
61 |
-
|
62 |
-
with row1_col2:
|
63 |
-
empty = st.empty()
|
64 |
-
|
65 |
-
url = empty.text_input(
|
66 |
-
"Enter a HTTP URL to a Cloud Optimized GeoTIFF (COG)",
|
67 |
-
cog,
|
68 |
-
)
|
69 |
-
|
70 |
-
if is_trusted_url(url):
|
71 |
-
try:
|
72 |
-
options = leafmap.cog_bands(url)
|
73 |
-
except Exception as e:
|
74 |
-
st.error(e)
|
75 |
-
if len(options) > 3:
|
76 |
-
default = options[:3]
|
77 |
-
else:
|
78 |
-
default = options[0]
|
79 |
-
bands = st.multiselect("Select bands to display", options, default=options)
|
80 |
-
|
81 |
-
if len(bands) == 1 or len(bands) == 3:
|
82 |
-
pass
|
83 |
-
else:
|
84 |
-
st.error("Please select one or three bands")
|
85 |
-
else:
|
86 |
-
st.error("Please enter a trusted URL")
|
87 |
-
|
88 |
-
add_params = st.checkbox("Add visualization parameters")
|
89 |
-
if add_params:
|
90 |
-
vis_params = st.text_area("Enter visualization parameters", "{}")
|
91 |
-
else:
|
92 |
-
vis_params = {}
|
93 |
-
|
94 |
-
if len(vis_params) > 0:
|
95 |
-
try:
|
96 |
-
vis_params = json.loads(vis_params.replace("'", '"'))
|
97 |
-
except Exception as e:
|
98 |
-
st.error(
|
99 |
-
f"Invalid visualization parameters. It should be a dictionary. Error: {e}"
|
100 |
-
)
|
101 |
-
vis_params = {}
|
102 |
-
|
103 |
-
submit = st.button("Submit")
|
104 |
-
|
105 |
-
m = leafmap.Map(latlon_control=False)
|
106 |
-
|
107 |
-
if submit:
|
108 |
-
if url:
|
109 |
-
try:
|
110 |
-
m.add_cog_layer(url, bands=bands, **vis_params)
|
111 |
-
except Exception as e:
|
112 |
-
with row1_col2:
|
113 |
-
st.error(e)
|
114 |
-
st.error("Work in progress. Try it again later.")
|
115 |
-
|
116 |
-
with row1_col1:
|
117 |
-
m.to_streamlit()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|