assignment / src /search_final.py
kundan621's picture
working guardrail
41f1bec
import os
from dotenv import load_dotenv
# Set cache directories for HuggingFace Spaces compatibility BEFORE any imports
if not os.getenv("HF_HOME"):
os.environ["HF_HOME"] = "/tmp/huggingface"
if not os.getenv("TRANSFORMERS_CACHE"):
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface/transformers"
if not os.getenv("SENTENCE_TRANSFORMERS_HOME"):
os.environ["SENTENCE_TRANSFORMERS_HOME"] = "/tmp/huggingface/sentence_transformers"
if not os.getenv("HF_HUB_CACHE"):
os.environ["HF_HUB_CACHE"] = "/tmp/huggingface/hub"
if not os.getenv("NLTK_DATA"):
os.environ["NLTK_DATA"] = "/tmp/nltk_data"
if not os.getenv("TORCH_HOME"):
os.environ["TORCH_HOME"] = "/tmp/torch"
if not os.getenv("HUGGINGFACE_HUB_CACHE"):
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface/hub"
# Create cache directories
try:
os.makedirs("/tmp/huggingface", exist_ok=True)
os.makedirs("/tmp/huggingface/transformers", exist_ok=True)
os.makedirs("/tmp/huggingface/sentence_transformers", exist_ok=True)
os.makedirs("/tmp/huggingface/hub", exist_ok=True)
os.makedirs("/tmp/nltk_data", exist_ok=True)
os.makedirs("/tmp/torch", exist_ok=True)
except Exception as e:
print(f"Warning: Could not create cache directories: {e}")
import re
import pickle
import faiss
import numpy as np
from typing import List, Dict
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from rank_bm25 import BM25Okapi
import nltk
from nltk.corpus import stopwords
import requests
import json
from openai import OpenAI
import logging
load_dotenv()
# ---------------- Logging Setup ----------------
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Set NLTK data path to a writable directory
try:
# Try multiple possible writable directories
possible_dirs = [
os.path.join(os.getcwd(), "nltk_data"),
os.path.join("/tmp", "nltk_data"),
os.path.join(os.path.expanduser("~"), "nltk_data")
]
nltk_data_dir = None
for dir_path in possible_dirs:
try:
os.makedirs(dir_path, exist_ok=True)
# Test if we can write to this directory
test_file = os.path.join(dir_path, "test_write")
with open(test_file, 'w') as f:
f.write("test")
os.remove(test_file)
nltk_data_dir = dir_path
break
except (OSError, PermissionError):
continue
if nltk_data_dir:
nltk.data.path.append(nltk_data_dir)
# Download to the custom directory or use existing data
try:
if nltk_data_dir:
nltk.download("stopwords", download_dir=nltk_data_dir, quiet=True)
else:
nltk.download("stopwords", quiet=True)
STOPWORDS = set(stopwords.words("english"))
except Exception as e:
print(f"NLTK download failed: {e}")
# Use existing nltk_data if available
try:
STOPWORDS = set(stopwords.words("english"))
except:
# Fallback to basic English stopwords
STOPWORDS = set(['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'through', 'during', 'before', 'after', 'above', 'below', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once'])
except Exception as e:
print(f"NLTK setup failed: {e}")
# Ultimate fallback
STOPWORDS = set(['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers', 'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'through', 'during', 'before', 'after', 'above', 'below', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once'])
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# ...rest of your imports...
# ---------------- Paths & Models ----------------
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
CROSS_ENCODER = "cross-encoder/ms-marco-MiniLM-L-6-v2"
# Get the directory where this script is located
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
OUT_DIR = os.path.join(SCRIPT_DIR, "data", "index_merged")
FAISS_PATH = os.path.join(OUT_DIR, "faiss_merged.index")
BM25_PATH = os.path.join(OUT_DIR, "bm25_merged.pkl")
META_PATH = os.path.join(OUT_DIR, "meta_merged.pkl")
# ---------------- Load Indexes ----------------
logger.info("Loading FAISS, BM25, metadata, and models...")
try:
faiss_index = faiss.read_index(FAISS_PATH)
with open(BM25_PATH, "rb") as f:
bm25_obj = pickle.load(f)
bm25 = bm25_obj["bm25"]
with open(META_PATH, "rb") as f:
meta: List[Dict] = pickle.load(f)
embed_model = SentenceTransformer(EMBED_MODEL)
reranker = CrossEncoder(CROSS_ENCODER)
api_key = os.getenv("HF_API_KEY")
if not api_key:
logger.warning("HF_API_KEY environment variable not set. Mistral API features will not be available.")
client = None # Set client to None when API key is not available
else:
client = OpenAI(
base_url="https://router.huggingface.co/v1",
api_key=api_key
)
except Exception as e:
logger.error(f"Error loading models or indexes: {e}")
raise
# ---------------- Hugging Face Mistral API ----------------
# HF_TOKEN and HF_MODEL should be set via environment variables
# HF_MODEL = "mistralai/Mistral-7B-Instruct-v0.2:featherless-ai"
def get_mistral_answer(query: str, context: str) -> str:
"""
Calls Mistral 7B Instruct API via Hugging Face Inference API.
Adds error handling and logging.
"""
if client is None:
return "Mistral API is not available. Please set HF_API_KEY environment variable to use AI-powered responses."
prompt = f"Context:\n{context}\n\nQuestion: {query}\nAnswer in full sentences using context."
try:
logger.info(f"Calling Mistral API for query: {query}")
completion = client.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.2:featherless-ai",
messages=[
{
"role": "user",
"content": prompt
}
]
)
answer = str(completion.choices[0].message.content)
logger.info(f"Mistral API response: {answer}")
return answer
except Exception as e:
logger.error(f"Error in Mistral API call: {e}")
return f"Error fetching answer from LLM: {e}"
# ---------------- Guardrails ----------------
# ---------------- Guardrails ----------------
BLOCKED_TERMS = ["weather", "cricket", "movie", "song", "football", "holiday",
"travel", "recipe", "music", "game", "sports", "politics", "election"]
FINANCE_DOMAINS = [
"financial reporting", "balance sheet", "income statement",
"assets and liabilities", "equity", "revenue", "profit and loss",
"goodwill impairment", "cash flow", "dividends", "taxation",
"investment", "valuation", "capital structure", "ownership interests",
"subsidiaries", "shareholders equity", "expenses", "earnings",
"debt", "amortization", "depreciation"
]
finance_embeds = embed_model.encode(FINANCE_DOMAINS, convert_to_tensor=True)
def validate_query(query: str, threshold: float = 0.5) -> bool:
q_lower = query.lower()
if any(bad in q_lower for bad in BLOCKED_TERMS):
print("[Guardrail] Rejected by blocklist.")
return False
q_emb = embed_model.encode(query, convert_to_tensor=True)
sim_scores = util.cos_sim(q_emb, finance_embeds)
max_score = float(sim_scores.max())
if max_score > threshold:
print(f"[Guardrail] Accepted (semantic match {max_score:.2f})")
return True
else:
print(f"[Guardrail] Rejected (low semantic score {max_score:.2f})")
return False
#-------------------Output Guardrail------------------
def validate_output(answer: str, context_docs: List[Dict]) -> str:
combined_context = " ".join([doc["content"].lower() for doc in context_docs])
if answer.lower() in combined_context:
return answer
return "The information could not be verified in the financial statement attached."
# ---------------- Preprocess ----------------
def preprocess_query(query: str, remove_stopwords: bool = True) -> str:
query = query.lower()
query = re.sub(r"[^a-z0-9\s]", " ", query)
tokens = query.split()
if remove_stopwords:
tokens = [t for t in tokens if t not in STOPWORDS]
return " ".join(tokens)
# ---------------- Hybrid Retrieval ----------------
def hybrid_candidates(query: str, candidate_k: int = 50, alpha: float = 0.5) -> List[int]:
q_emb = embed_model.encode([preprocess_query(query, remove_stopwords=False)], convert_to_numpy=True, normalize_embeddings=True)
faiss_scores, faiss_ids = faiss_index.search(q_emb, max(candidate_k, 50))
faiss_ids = faiss_ids[0]
faiss_scores = faiss_scores[0]
tokenized_query = preprocess_query(query).split()
bm25_scores = bm25.get_scores(tokenized_query)
topN = max(candidate_k, 50)
bm25_top = np.argsort(bm25_scores)[::-1][:topN]
faiss_top = faiss_ids[:topN]
union_ids = np.unique(np.concatenate([bm25_top, faiss_top]))
faiss_score_map = {int(i): float(s) for i, s in zip(faiss_ids, faiss_scores)}
f_arr = np.array([faiss_score_map.get(int(i), -1.0) for i in union_ids], dtype=float)
f_min = np.min(f_arr)
if np.any(f_arr < 0):
f_arr = np.where(f_arr < 0, f_min, f_arr)
b_arr = np.array([bm25_scores[int(i)] for i in union_ids], dtype=float)
def _norm(x): return (x - np.min(x)) / (np.ptp(x) + 1e-9)
combined = alpha * _norm(f_arr) + (1 - alpha) * _norm(b_arr)
order = np.argsort(combined)[::-1]
return union_ids[order][:candidate_k].tolist()
# ---------------- Cross-Encoder Rerank ----------------
def rerank_cross_encoder(query: str, cand_ids: List[int], top_k: int = 10) -> List[Dict]:
pairs = [(query, meta[i]["content"]) for i in cand_ids]
scores = reranker.predict(pairs)
order = np.argsort(scores)[::-1][:top_k]
return [{"id": cand_ids[i], "chunk_size": meta[cand_ids[i]]["chunk_size"], "content": meta[cand_ids[i]]["content"], "rerank_score": float(scores[i])} for i in order]
# ---------------- Extract Numeric ----------------
def extract_value_for_year_and_concept(year: str, concept: str, context_docs: List[Dict]) -> str:
target_year = str(year)
concept_lower = concept.lower()
for doc in context_docs:
text = doc.get("content", "")
lines = [line for line in text.split("\n") if line.strip() and any(c.isdigit() for c in line)]
header_idx = None
year_to_col = {}
for idx, line in enumerate(lines):
years_in_line = re.findall(r"20\d{2}", line)
if years_in_line:
for col_idx, y in enumerate(years_in_line):
year_to_col[y] = col_idx
header_idx = idx
break
if target_year not in year_to_col or header_idx is None:
continue
for line in lines[header_idx+1:]:
if concept_lower in line.lower():
cols = re.split(r"\s{2,}|\t", line)
col_idx = year_to_col[target_year]
if col_idx < len(cols):
return cols[col_idx].replace(",", "")
return ""
# ---------------- RAG Pipeline ----------------
def rag_pipeline(query: str, top_k: int = 5, candidate_k: int = 50, alpha: float = 0.6):
logger.info(f"Received query: {query}")
try:
if not validate_query(query):
logger.warning("Query rejected: Not finance-related.")
return "Query rejected: Please ask finance-related questions.", []
cand_ids = hybrid_candidates(query, candidate_k=candidate_k, alpha=alpha)
logger.info(f"Hybrid candidates retrieved: {cand_ids}")
reranked = rerank_cross_encoder(query, cand_ids, top_k=top_k)
logger.info(f"Reranked top docs: {[d['id'] for d in reranked]}")
year_match = re.search(r"(20\d{2})", query)
year = year_match.group(0) if year_match else None
concept = re.sub(r"for the year 20\d{2}", "", query, flags=re.IGNORECASE).strip()
year_specific_answer = None
if year and concept:
year_specific_answer = extract_value_for_year_and_concept(year, concept, reranked)
logger.info(f"Year-specific answer: {year_specific_answer}")
if year_specific_answer:
answer = year_specific_answer
else:
# Pass top 5 chunks as context
context_text = "\n".join([d["content"] for d in reranked])
answer = get_mistral_answer(query, context_text)
final_answer = answer #validate_output(answer, reranked)
logger.info(f"Final Answer: {final_answer}")
return final_answer, reranked
except Exception as e:
logger.error(f"Error in RAG pipeline: {e}")
return f"Error in RAG pipeline: {e}", []
# ---------------- Example ----------------
if __name__ == "__main__":
query = "What is the Balance as at March 31, 2024 for accumulated deficit?"
answer, top_docs = rag_pipeline(query)
print(f"\nQuery: {query}")
print("\nFinal Answer:\n", answer)
print("\nTop supporting docs:")
for doc in top_docs:
print(f"[{doc['id']}] (chunk={doc['chunk_size']}, score={doc['rerank_score']:.3f}) -> {doc['content'][:120]}...")