Spaces:
Running
Running
| import cv2 | |
| import numpy as np | |
| def sort_by_brightness(palette: np.uint8): | |
| """ | |
| Sorts given color palette by brightness. | |
| https://stackoverflow.com/a/596241 | |
| """ | |
| luminosity = ( | |
| 0.2126 * palette[:, 2] + 0.7152 * palette[:, 1] + 0.0722 * palette[:, 0] | |
| ) | |
| return palette[np.argsort(luminosity)] | |
| def display_palette(palette: np.uint8, sort=True): | |
| """ | |
| Generates an image displaying given color palette. | |
| """ | |
| swatch_size = 100 | |
| num_colors = palette.shape[0] | |
| palette_image = np.zeros((swatch_size, swatch_size * num_colors, 3), dtype=np.uint8) | |
| if sort: | |
| palette = sort_by_brightness(palette) | |
| for i, color in enumerate(palette): | |
| palette_image[:, i * swatch_size : (i + 1) * swatch_size] = color | |
| return palette_image | |
| def extract_color_palette(img, k: int): | |
| """ | |
| Extracts color palette from the given image using k-means clustering. | |
| """ | |
| pixels = img.reshape((-1, 3)) | |
| pixels = np.float32(pixels) | |
| criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) | |
| _, labels, centers = cv2.kmeans( | |
| pixels, k, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS | |
| ) | |
| palette = np.uint8(centers) | |
| return palette, labels | |
| def pixelate(img, pixel_size: int, blur=False, use_palette=False, k=8): | |
| """ | |
| Pixelates an image by reducing its pixel resolution and optionally applying blur effect and color quantization. | |
| """ | |
| palette = None | |
| if use_palette: | |
| palette, labels = extract_color_palette(img, k) | |
| res = palette[labels.flatten()] | |
| img = res.reshape((img.shape)) | |
| palette = display_palette(palette, sort=True) | |
| if blur: | |
| img = cv2.blur(img, (7, 7)) | |
| for i in range(0, img.shape[0], pixel_size): | |
| for j in range(0, img.shape[1], pixel_size): | |
| img[i : i + pixel_size, j : j + pixel_size] = img[i][j] | |
| return img, palette | |