dolly_test_1 / app.py
kuangren's picture
Update app.py
6cdcfa6
raw
history blame
934 Bytes
import streamlit as st
from transformers import pipeline
from PIL import Image
from instruct_pipeline import InstructionTextGenerationPipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b", padding_side="left")
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b", device_map="auto")
generate_text = InstructionTextGenerationPipeline(model=model, tokenizer=tokenizer)
text=generate_text("Explain to me the difference between nuclear fission and fusion.")
st.title(text)
file_name = st.file_uploader("Upload a hot dog candidate image")
if file_name is not None:
col1, col2 = st.columns(2)
image = Image.open(file_name)
col1.image(image, use_column_width=True)
predictions = pipeline(image)
col2.header(text)
for p in predictions:
col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")