ksumhs's picture
Update app.py
3a300c0 verified
raw
history blame
2.06 kB
import gradio as gr
from transformers import pipeline
from gtts import gTTS
import tempfile
# Load Hugging Face pipelines
sentiment_model = pipeline("sentiment-analysis")
summarizer_model = pipeline("summarization")
# Sentiment analysis function
def analyze_sentiment(text):
result = sentiment_model(text)[0]
label = result['label']
score = round(result['score'], 2)
return f"Sentiment: {label}, Confidence: {score}"
# Summarization function
def summarize_text(text):
summary = summarizer_model(text, max_length=60, min_length=15, do_sample=False)
return summary[0]['summary_text']
# Text-to-speech function
def text_to_speech(text):
tts = gTTS(text)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
tts.save(fp.name)
return fp.name
# Gradio app with separate tabs/pages
with gr.Blocks() as demo:
gr.Markdown("## πŸ“˜ Homework - Tuwaiq Academy")
with gr.Tab("πŸ” Sentiment Analysis"):
gr.Markdown("### Analyze the sentiment of your text")
input_sent = gr.Textbox(label="Enter your text", lines=6, placeholder="Type something...")
output_sent = gr.Textbox(label="Sentiment Result")
btn_sent = gr.Button("Analyze")
btn_sent.click(analyze_sentiment, inputs=input_sent, outputs=output_sent)
with gr.Tab("πŸ“ Summarization"):
gr.Markdown("### Summarize your text")
input_sum = gr.Textbox(label="Enter your text", lines=6, placeholder="Paste a paragraph...")
output_sum = gr.Textbox(label="Summary")
btn_sum = gr.Button("Summarize")
btn_sum.click(summarize_text, inputs=input_sum, outputs=output_sum)
with gr.Tab("πŸ”Š Text to Speech"):
gr.Markdown("### Convert text to speech")
input_tts = gr.Textbox(label="Enter your text", lines=6, placeholder="Text for audio...")
output_audio = gr.Audio(label="Speech Output", type="filepath")
btn_tts = gr.Button("Convert")
btn_tts.click(text_to_speech, inputs=input_tts, outputs=output_audio)
demo.launch()