kshitijthakkar
commited on
Commit
·
1a4f599
1
Parent(s):
c6f336e
initial working code
Browse files- .gitignore +187 -0
- Dockerfile +33 -0
- app.py +611 -0
- enhanced_app.py +745 -0
- model_handler.py +434 -0
- requirements.txt +0 -0
.gitignore
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
.sh
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# UV
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
#uv.lock
|
| 102 |
+
|
| 103 |
+
# poetry
|
| 104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 106 |
+
# commonly ignored for libraries.
|
| 107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 108 |
+
#poetry.lock
|
| 109 |
+
|
| 110 |
+
# pdm
|
| 111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 112 |
+
#pdm.lock
|
| 113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 114 |
+
# in version control.
|
| 115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
| 116 |
+
.pdm.toml
|
| 117 |
+
.pdm-python
|
| 118 |
+
.pdm-build/
|
| 119 |
+
|
| 120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 121 |
+
__pypackages__/
|
| 122 |
+
|
| 123 |
+
# Celery stuff
|
| 124 |
+
celerybeat-schedule
|
| 125 |
+
celerybeat.pid
|
| 126 |
+
|
| 127 |
+
# SageMath parsed files
|
| 128 |
+
*.sage.py
|
| 129 |
+
|
| 130 |
+
# Environments
|
| 131 |
+
.env
|
| 132 |
+
.venv
|
| 133 |
+
env/
|
| 134 |
+
venv/
|
| 135 |
+
ENV/
|
| 136 |
+
env.bak/
|
| 137 |
+
venv.bak/
|
| 138 |
+
|
| 139 |
+
# Spyder project settings
|
| 140 |
+
.spyderproject
|
| 141 |
+
.spyproject
|
| 142 |
+
|
| 143 |
+
# Rope project settings
|
| 144 |
+
.ropeproject
|
| 145 |
+
|
| 146 |
+
# mkdocs documentation
|
| 147 |
+
/site
|
| 148 |
+
|
| 149 |
+
# mypy
|
| 150 |
+
.mypy_cache/
|
| 151 |
+
.dmypy.json
|
| 152 |
+
dmypy.json
|
| 153 |
+
|
| 154 |
+
# Pyre type checker
|
| 155 |
+
.pyre/
|
| 156 |
+
|
| 157 |
+
# pytype static type analyzer
|
| 158 |
+
.pytype/
|
| 159 |
+
|
| 160 |
+
# Cython debug symbols
|
| 161 |
+
cython_debug/
|
| 162 |
+
|
| 163 |
+
# PyCharm
|
| 164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 168 |
+
#.idea/
|
| 169 |
+
|
| 170 |
+
# Ruff stuff:
|
| 171 |
+
.ruff_cache/
|
| 172 |
+
|
| 173 |
+
# PyPI configuration file
|
| 174 |
+
.pypirc
|
| 175 |
+
|
| 176 |
+
.xml
|
| 177 |
+
.png
|
| 178 |
+
.pdf
|
| 179 |
+
.pptx
|
| 180 |
+
.zip
|
| 181 |
+
.log
|
| 182 |
+
.gradio
|
| 183 |
+
.idea
|
| 184 |
+
*conversation_logs/
|
| 185 |
+
push_to_hub.sh
|
| 186 |
+
init_repos.sh
|
| 187 |
+
generated_images/
|
Dockerfile
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Dockerfile for a Python application with user permissions
|
| 2 |
+
FROM python:3.11-slim
|
| 3 |
+
|
| 4 |
+
# Install system dependencies as root
|
| 5 |
+
RUN apt-get update && apt-get install -y build-essential && apt-get install -y curl && rm -rf /var/lib/apt/lists/*
|
| 6 |
+
|
| 7 |
+
# Create user and set up directory structure as root
|
| 8 |
+
RUN useradd -m -u 1000 user && \
|
| 9 |
+
mkdir -p /app && \
|
| 10 |
+
chown -R user:user /app
|
| 11 |
+
|
| 12 |
+
# Set working directory
|
| 13 |
+
WORKDIR /app
|
| 14 |
+
|
| 15 |
+
# Switch to user AFTER setting up permissions
|
| 16 |
+
USER user
|
| 17 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 18 |
+
|
| 19 |
+
# Copy files with proper ownership
|
| 20 |
+
COPY --chown=user:user . /app
|
| 21 |
+
|
| 22 |
+
# Install Python dependencies
|
| 23 |
+
COPY --chown=user:user ./requirements.txt requirements.txt
|
| 24 |
+
RUN pip install --no-cache-dir --upgrade pip && \
|
| 25 |
+
pip install --no-cache-dir --user -r requirements.txt
|
| 26 |
+
|
| 27 |
+
# Make start.sh executable
|
| 28 |
+
RUN chmod +x run.sh
|
| 29 |
+
EXPOSE 8000 7860
|
| 30 |
+
# Run the startup script
|
| 31 |
+
#CMD ["sh", "-c", "bash run.sh"]
|
| 32 |
+
#CMD bash -c "python /app/mcp_server.py & sleep 60 && python /app/app.py"
|
| 33 |
+
CMD bash -c "python /app/enhanced_app.py"
|
app.py
ADDED
|
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
import datetime
|
| 6 |
+
import json
|
| 7 |
+
import random
|
| 8 |
+
import os
|
| 9 |
+
from model_handler import generate_response, get_inference_configs
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
# Configuration for datasets
|
| 13 |
+
DATASET_CONFIGS = {
|
| 14 |
+
'Loggenix Synthetic AI Tasks Eval (with outputs)': {
|
| 15 |
+
'repo_id': 'kshitijthakkar/loggenix-synthetic-ai-tasks-eval-with-outputs',
|
| 16 |
+
'split': 'train'
|
| 17 |
+
},
|
| 18 |
+
'Loggenix Synthetic AI Tasks Eval (with outputs) v5': {
|
| 19 |
+
'repo_id': 'kshitijthakkar/loggenix-synthetic-ai-tasks-eval_v5-with-outputs',
|
| 20 |
+
'split': 'train'
|
| 21 |
+
}
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# Load main dataset for inference tab
|
| 26 |
+
def load_inference_dataset():
|
| 27 |
+
"""Load the main dataset for inference use case"""
|
| 28 |
+
try:
|
| 29 |
+
print("Loading synthetic-ai-tasks-eval-v5 dataset...")
|
| 30 |
+
dataset = load_dataset(
|
| 31 |
+
'kshitijthakkar/synthetic-ai-tasks-eval-v5',
|
| 32 |
+
split='train',
|
| 33 |
+
trust_remote_code=True
|
| 34 |
+
)
|
| 35 |
+
df = dataset.to_pandas()
|
| 36 |
+
print(f"✓ Successfully loaded: {len(df)} rows, {len(df.columns)} columns")
|
| 37 |
+
return df
|
| 38 |
+
except Exception as e:
|
| 39 |
+
print(f"✗ Error loading dataset: {str(e)}")
|
| 40 |
+
return pd.DataFrame({'Error': [f'Failed to load: {str(e)}']})
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# Load dataset for eval samples tab
|
| 44 |
+
def load_eval_datasets():
|
| 45 |
+
"""Load all datasets for evaluation samples"""
|
| 46 |
+
datasets = {}
|
| 47 |
+
for display_name, config in DATASET_CONFIGS.items():
|
| 48 |
+
try:
|
| 49 |
+
print(f"Loading {display_name}...")
|
| 50 |
+
dataset = load_dataset(
|
| 51 |
+
config['repo_id'],
|
| 52 |
+
split=config['split'],
|
| 53 |
+
trust_remote_code=True
|
| 54 |
+
)
|
| 55 |
+
df = dataset.to_pandas()
|
| 56 |
+
datasets[display_name] = df
|
| 57 |
+
print(f"✓ Successfully loaded {display_name}: {len(df)} rows")
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"✗ Error loading {display_name}: {str(e)}")
|
| 60 |
+
datasets[display_name] = pd.DataFrame({
|
| 61 |
+
'Error': [f'Failed to load: {str(e)}'],
|
| 62 |
+
'Dataset': [config['repo_id']]
|
| 63 |
+
})
|
| 64 |
+
return datasets
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# Load datasets
|
| 68 |
+
INFERENCE_DATASET = load_inference_dataset()
|
| 69 |
+
EVAL_DATASETS = load_eval_datasets()
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
# ===== TAB 1: INFERENCE USE CASE =====
|
| 73 |
+
|
| 74 |
+
def get_task_types():
|
| 75 |
+
"""Get unique task types from inference dataset"""
|
| 76 |
+
if 'task_type' in INFERENCE_DATASET.columns:
|
| 77 |
+
task_types = INFERENCE_DATASET['task_type'].unique().tolist()
|
| 78 |
+
return [str(t) for t in task_types if pd.notna(t)]
|
| 79 |
+
return ["No task types available"]
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_task_by_type(task_type):
|
| 83 |
+
"""Get task content by task type"""
|
| 84 |
+
if 'task_type' in INFERENCE_DATASET.columns and 'task' in INFERENCE_DATASET.columns:
|
| 85 |
+
filtered = INFERENCE_DATASET[INFERENCE_DATASET['task_type'] == task_type]
|
| 86 |
+
if len(filtered) > 0:
|
| 87 |
+
return str(filtered.iloc[0]['task'])
|
| 88 |
+
return "No task found for this type"
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def run_inference(task_type, system_prompt, user_input, inference_config):
|
| 92 |
+
"""Run model inference"""
|
| 93 |
+
if not user_input.strip():
|
| 94 |
+
return "Please enter a user input"
|
| 95 |
+
|
| 96 |
+
if not system_prompt.strip():
|
| 97 |
+
return "Please select a task type to load system prompt"
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
# Get inference configuration
|
| 101 |
+
configs = get_inference_configs()
|
| 102 |
+
config = configs.get(inference_config, configs["Optimized for Speed"])
|
| 103 |
+
|
| 104 |
+
# Run inference
|
| 105 |
+
response = generate_response(
|
| 106 |
+
system_prompt=system_prompt,
|
| 107 |
+
user_input=user_input,
|
| 108 |
+
config_name=inference_config
|
| 109 |
+
)
|
| 110 |
+
return response
|
| 111 |
+
except Exception as e:
|
| 112 |
+
return f"Error during inference: {str(e)}"
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# ===== TAB 2: EVAL SAMPLES =====
|
| 116 |
+
|
| 117 |
+
def update_eval_table(dataset_name):
|
| 118 |
+
"""Update eval table based on selected dataset"""
|
| 119 |
+
if dataset_name in EVAL_DATASETS:
|
| 120 |
+
return EVAL_DATASETS[dataset_name].head(100)
|
| 121 |
+
return pd.DataFrame()
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def get_eval_dataset_info(dataset_name):
|
| 125 |
+
"""Get info about selected eval dataset"""
|
| 126 |
+
if dataset_name in EVAL_DATASETS:
|
| 127 |
+
df = EVAL_DATASETS[dataset_name]
|
| 128 |
+
return f"""
|
| 129 |
+
**Dataset**: {dataset_name}
|
| 130 |
+
- **Rows**: {len(df):,}
|
| 131 |
+
- **Columns**: {len(df.columns)}
|
| 132 |
+
- **Column Names**: {', '.join(df.columns.tolist())}
|
| 133 |
+
"""
|
| 134 |
+
return "No dataset selected"
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
# ===== TAB 3 & 4: FLAGGING FUNCTIONALITY =====
|
| 138 |
+
|
| 139 |
+
def generate_chart():
|
| 140 |
+
"""Generate a sample Plotly chart"""
|
| 141 |
+
x = list(range(10))
|
| 142 |
+
y = [random.randint(1, 100) for _ in x]
|
| 143 |
+
fig = go.Figure()
|
| 144 |
+
fig.add_trace(go.Scatter(x=x, y=y, mode="lines+markers", name="Random Data"))
|
| 145 |
+
fig.update_layout(title="Sample Chart", xaxis_title="X-axis", yaxis_title="Y-axis")
|
| 146 |
+
return fig.to_html(full_html=False)
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def chat_interface(prompt, history):
|
| 150 |
+
"""Handle chat interface with history"""
|
| 151 |
+
if not prompt.strip():
|
| 152 |
+
return history, ""
|
| 153 |
+
|
| 154 |
+
history.append(("You", prompt))
|
| 155 |
+
|
| 156 |
+
try:
|
| 157 |
+
if "chart" in prompt.lower() or "graph" in prompt.lower():
|
| 158 |
+
response = generate_chart()
|
| 159 |
+
else:
|
| 160 |
+
response = f"This is a demo response to: {prompt}"
|
| 161 |
+
|
| 162 |
+
if isinstance(response, str):
|
| 163 |
+
formatted_response = f"**AI Assistant:**\n{response}"
|
| 164 |
+
history.append(("AI Assistant", formatted_response))
|
| 165 |
+
else:
|
| 166 |
+
history.append(("AI Assistant", response))
|
| 167 |
+
except Exception as e:
|
| 168 |
+
error_msg = f"**AI Assistant:**\nSorry, an error occurred: {str(e)}"
|
| 169 |
+
history.append(("AI Assistant", error_msg))
|
| 170 |
+
|
| 171 |
+
return history, ""
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def flag_response(history, flagged_message, flag_reason):
|
| 175 |
+
"""Flag a response"""
|
| 176 |
+
if not flagged_message or flagged_message == "No responses available":
|
| 177 |
+
return "Invalid message selection."
|
| 178 |
+
|
| 179 |
+
try:
|
| 180 |
+
flagged_index = int(flagged_message.split()[1][:-1])
|
| 181 |
+
if flagged_index >= len(history) or history[flagged_index][0] != "AI Assistant":
|
| 182 |
+
return "You can only flag assistant responses."
|
| 183 |
+
|
| 184 |
+
flagged_message_content = history[flagged_index][1]
|
| 185 |
+
|
| 186 |
+
log_entry = {
|
| 187 |
+
"timestamp": datetime.datetime.now().isoformat(),
|
| 188 |
+
"flag_reason": str(flag_reason),
|
| 189 |
+
"flagged_message": str(flagged_message_content),
|
| 190 |
+
"conversation_context": history,
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
os.makedirs("logs", exist_ok=True)
|
| 194 |
+
with open("logs/flagged_responses.log", "a") as f:
|
| 195 |
+
f.write(json.dumps(log_entry) + "\n")
|
| 196 |
+
|
| 197 |
+
return f"Response flagged successfully"
|
| 198 |
+
except Exception as e:
|
| 199 |
+
return f"Error flagging response: {str(e)}"
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def get_assistant_responses(history):
|
| 203 |
+
"""Get dropdown options for assistant responses"""
|
| 204 |
+
responses = [
|
| 205 |
+
f"Response {i}: {str(msg[1])[:50]}..."
|
| 206 |
+
for i, msg in enumerate(history)
|
| 207 |
+
if msg[0] == "AI Assistant"
|
| 208 |
+
]
|
| 209 |
+
|
| 210 |
+
if not responses:
|
| 211 |
+
responses = ["No responses available"]
|
| 212 |
+
|
| 213 |
+
return gr.update(choices=responses, value=responses[0])
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def display_selected_message(selected_index, history):
|
| 217 |
+
"""Display the selected flagged message"""
|
| 218 |
+
if selected_index == "No responses available":
|
| 219 |
+
return "No responses available"
|
| 220 |
+
|
| 221 |
+
try:
|
| 222 |
+
flagged_index = int(selected_index.split()[1][:-1])
|
| 223 |
+
if flagged_index < len(history) and history[flagged_index][0] == "AI Assistant":
|
| 224 |
+
return history[flagged_index][1]
|
| 225 |
+
else:
|
| 226 |
+
return "Invalid selection."
|
| 227 |
+
except Exception as e:
|
| 228 |
+
return f"Error: {str(e)}"
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def read_flagged_messages():
|
| 232 |
+
"""Read flagged messages from log file"""
|
| 233 |
+
try:
|
| 234 |
+
if not os.path.exists("logs/flagged_responses.log"):
|
| 235 |
+
return pd.DataFrame()
|
| 236 |
+
|
| 237 |
+
with open("logs/flagged_responses.log", "r") as f:
|
| 238 |
+
flagged_messages = f.readlines()
|
| 239 |
+
|
| 240 |
+
if not flagged_messages:
|
| 241 |
+
return pd.DataFrame()
|
| 242 |
+
|
| 243 |
+
table_data = []
|
| 244 |
+
for entry in flagged_messages:
|
| 245 |
+
data = json.loads(entry)
|
| 246 |
+
table_data.append({
|
| 247 |
+
"Timestamp": data.get("timestamp", "N/A"),
|
| 248 |
+
"Flag Reason": data.get("flag_reason", "N/A"),
|
| 249 |
+
"Flagged Message": data.get("flagged_message", "N/A")[:100] + "...",
|
| 250 |
+
"Conversation Context": str(len(data.get("conversation_context", []))) + " messages"
|
| 251 |
+
})
|
| 252 |
+
return pd.DataFrame(table_data)
|
| 253 |
+
except Exception as e:
|
| 254 |
+
return pd.DataFrame({"Error": [f"Error reading flagged messages: {str(e)}"]})
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def handle_row_select(evt: gr.SelectData):
|
| 258 |
+
"""Handle row selection in flagged messages table"""
|
| 259 |
+
try:
|
| 260 |
+
if not os.path.exists("logs/flagged_responses.log"):
|
| 261 |
+
return []
|
| 262 |
+
|
| 263 |
+
with open("logs/flagged_responses.log", "r") as f:
|
| 264 |
+
flagged_messages_log = f.readlines()
|
| 265 |
+
|
| 266 |
+
if evt.index[0] < len(flagged_messages_log):
|
| 267 |
+
selected_entry = json.loads(flagged_messages_log[evt.index[0]])
|
| 268 |
+
conversation_context = selected_entry.get("conversation_context", [])
|
| 269 |
+
return conversation_context
|
| 270 |
+
return []
|
| 271 |
+
except Exception as e:
|
| 272 |
+
return [("System", f"Error loading conversation: {str(e)}")]
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def clear_history():
|
| 276 |
+
"""Clear chat history"""
|
| 277 |
+
return [], gr.update(choices=["No responses available"], value="No responses available")
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# ===== MAIN INTERFACE =====
|
| 281 |
+
|
| 282 |
+
def create_interface():
|
| 283 |
+
with gr.Blocks(title="AI Tasks Evaluation Suite", theme=gr.themes.Soft()) as demo:
|
| 284 |
+
gr.Markdown("# 🤖 AI Tasks Evaluation Suite")
|
| 285 |
+
gr.Markdown("Comprehensive platform for AI model evaluation and testing")
|
| 286 |
+
|
| 287 |
+
with gr.Tabs():
|
| 288 |
+
# TAB 1: INFERENCE USE CASE
|
| 289 |
+
with gr.Tab("🚀 Inference Use Case"):
|
| 290 |
+
gr.Markdown("## Model Inference Testing")
|
| 291 |
+
|
| 292 |
+
with gr.Row():
|
| 293 |
+
with gr.Column(scale=1):
|
| 294 |
+
# Task type dropdown
|
| 295 |
+
task_type_dropdown = gr.Dropdown(
|
| 296 |
+
choices=get_task_types(),
|
| 297 |
+
value=get_task_types()[0] if get_task_types() else None,
|
| 298 |
+
label="Task Type",
|
| 299 |
+
info="Select task type to load system prompt"
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# Inference configuration
|
| 303 |
+
inference_config = gr.Dropdown(
|
| 304 |
+
choices=list(get_inference_configs().keys()),
|
| 305 |
+
value="Optimized for Speed",
|
| 306 |
+
label="Inference Configuration",
|
| 307 |
+
info="Select inference optimization level"
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
with gr.Column(scale=2):
|
| 311 |
+
# System prompt (editable)
|
| 312 |
+
system_prompt = gr.Textbox(
|
| 313 |
+
label="System Prompt (Editable)",
|
| 314 |
+
lines=6,
|
| 315 |
+
max_lines=10,
|
| 316 |
+
placeholder="Select a task type to load system prompt...",
|
| 317 |
+
interactive=True
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
with gr.Row():
|
| 321 |
+
with gr.Column():
|
| 322 |
+
# User input
|
| 323 |
+
user_input = gr.Textbox(
|
| 324 |
+
label="User Input",
|
| 325 |
+
lines=4,
|
| 326 |
+
placeholder="Enter your input here...",
|
| 327 |
+
interactive=True
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
with gr.Column():
|
| 331 |
+
# Model response
|
| 332 |
+
model_response = gr.Textbox(
|
| 333 |
+
label="Model Response",
|
| 334 |
+
lines=8,
|
| 335 |
+
interactive=False
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
with gr.Row():
|
| 339 |
+
submit_btn = gr.Button("🔥 Run Inference", variant="primary", size="lg")
|
| 340 |
+
clear_btn = gr.Button("🗑️ Clear", variant="secondary")
|
| 341 |
+
|
| 342 |
+
# Event handlers for Tab 1
|
| 343 |
+
task_type_dropdown.change(
|
| 344 |
+
fn=get_task_by_type,
|
| 345 |
+
inputs=[task_type_dropdown],
|
| 346 |
+
outputs=[system_prompt]
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
submit_btn.click(
|
| 350 |
+
fn=run_inference,
|
| 351 |
+
inputs=[task_type_dropdown, system_prompt, user_input, inference_config],
|
| 352 |
+
outputs=[model_response]
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
clear_btn.click(
|
| 356 |
+
fn=lambda: ("", "", ""),
|
| 357 |
+
outputs=[system_prompt, user_input, model_response]
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
# TAB 2: EVAL SAMPLES
|
| 361 |
+
with gr.Tab("📊 Eval Samples"):
|
| 362 |
+
gr.Markdown("## Dataset Evaluation Samples")
|
| 363 |
+
|
| 364 |
+
with gr.Row():
|
| 365 |
+
with gr.Column(scale=1):
|
| 366 |
+
eval_dataset_dropdown = gr.Dropdown(
|
| 367 |
+
choices=list(EVAL_DATASETS.keys()),
|
| 368 |
+
value=list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else None,
|
| 369 |
+
label="Select Dataset",
|
| 370 |
+
info="Choose evaluation dataset to view"
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
eval_dataset_info = gr.Markdown(
|
| 374 |
+
get_eval_dataset_info(list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else "")
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
with gr.Row():
|
| 378 |
+
eval_table = gr.Dataframe(
|
| 379 |
+
value=update_eval_table(list(EVAL_DATASETS.keys())[0]) if EVAL_DATASETS else pd.DataFrame(),
|
| 380 |
+
label="Dataset Table",
|
| 381 |
+
max_height=800,
|
| 382 |
+
min_width=800,
|
| 383 |
+
interactive=False,
|
| 384 |
+
wrap=True,
|
| 385 |
+
show_fullscreen_button=True,
|
| 386 |
+
show_copy_button=True,
|
| 387 |
+
show_row_numbers=True,
|
| 388 |
+
show_search="filter",
|
| 389 |
+
)
|
| 390 |
+
|
| 391 |
+
# Event handlers for Tab 2
|
| 392 |
+
eval_dataset_dropdown.change(
|
| 393 |
+
fn=lambda x: (update_eval_table(x), get_eval_dataset_info(x)),
|
| 394 |
+
inputs=[eval_dataset_dropdown],
|
| 395 |
+
outputs=[eval_table, eval_dataset_info]
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
# TAB 3: FLAG RESPONSES
|
| 399 |
+
with gr.Tab("🚩 Flag Responses"):
|
| 400 |
+
gr.Markdown("## Chat Interface with Response Flagging")
|
| 401 |
+
|
| 402 |
+
with gr.Row():
|
| 403 |
+
with gr.Column():
|
| 404 |
+
chat_input = gr.Textbox(placeholder="Ask something...", label="Your Message")
|
| 405 |
+
|
| 406 |
+
with gr.Row():
|
| 407 |
+
chat_submit_btn = gr.Button("Send", variant="primary")
|
| 408 |
+
chat_clear_btn = gr.Button("Clear History", variant="secondary")
|
| 409 |
+
|
| 410 |
+
with gr.Column():
|
| 411 |
+
chat_display = gr.Chatbot(label="Chat History", height=400)
|
| 412 |
+
chat_history_state = gr.State([])
|
| 413 |
+
|
| 414 |
+
gr.Markdown("### Flag Response")
|
| 415 |
+
with gr.Row():
|
| 416 |
+
with gr.Column():
|
| 417 |
+
flagged_message_index = gr.Dropdown(
|
| 418 |
+
label="Select a response to flag",
|
| 419 |
+
choices=["No responses available"],
|
| 420 |
+
value="No responses available",
|
| 421 |
+
interactive=True
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
selected_message_display = gr.Textbox(
|
| 425 |
+
label="Selected Response",
|
| 426 |
+
interactive=False,
|
| 427 |
+
lines=4
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
with gr.Column():
|
| 431 |
+
flag_reason = gr.Textbox(
|
| 432 |
+
placeholder="Enter reason for flagging...",
|
| 433 |
+
label="Reason for Flagging"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
flag_btn = gr.Button("Flag Response", variant="stop")
|
| 437 |
+
flag_output = gr.Textbox(label="Flagging Feedback", visible=True)
|
| 438 |
+
|
| 439 |
+
# Event handlers for Tab 3
|
| 440 |
+
chat_submit_btn.click(
|
| 441 |
+
chat_interface,
|
| 442 |
+
inputs=[chat_input, chat_history_state],
|
| 443 |
+
outputs=[chat_display, chat_input]
|
| 444 |
+
).then(
|
| 445 |
+
get_assistant_responses,
|
| 446 |
+
inputs=[chat_history_state],
|
| 447 |
+
outputs=[flagged_message_index]
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
chat_clear_btn.click(
|
| 451 |
+
clear_history,
|
| 452 |
+
outputs=[chat_display, flagged_message_index]
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
flagged_message_index.change(
|
| 456 |
+
display_selected_message,
|
| 457 |
+
inputs=[flagged_message_index, chat_history_state],
|
| 458 |
+
outputs=[selected_message_display]
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
flag_btn.click(
|
| 462 |
+
flag_response,
|
| 463 |
+
inputs=[chat_history_state, flagged_message_index, flag_reason],
|
| 464 |
+
outputs=[flag_output]
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
# TAB 4: VIEW FLAGGED RESPONSES
|
| 468 |
+
with gr.Tab("👀 View Flagged Responses"):
|
| 469 |
+
gr.Markdown("## Review Flagged Responses")
|
| 470 |
+
|
| 471 |
+
with gr.Row():
|
| 472 |
+
with gr.Column():
|
| 473 |
+
flagged_messages_display = gr.Dataframe(
|
| 474 |
+
headers=["Timestamp", "Flag Reason", "Flagged Message", "Conversation Context"],
|
| 475 |
+
interactive=False,
|
| 476 |
+
max_height=400
|
| 477 |
+
)
|
| 478 |
+
refresh_btn = gr.Button("🔄 Refresh", variant="primary")
|
| 479 |
+
|
| 480 |
+
with gr.Column():
|
| 481 |
+
conversation_context_display = gr.Chatbot(
|
| 482 |
+
label="Conversation Context",
|
| 483 |
+
height=400
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
# Event handlers for Tab 4
|
| 487 |
+
flagged_messages_display.select(
|
| 488 |
+
handle_row_select,
|
| 489 |
+
outputs=[conversation_context_display]
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
refresh_btn.click(
|
| 493 |
+
read_flagged_messages,
|
| 494 |
+
outputs=[flagged_messages_display]
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
# TAB 5: MODEL EVAL RESULTS
|
| 498 |
+
with gr.Tab("📈 Model Eval Results"):
|
| 499 |
+
gr.Markdown("## Model Evaluation Results")
|
| 500 |
+
gr.Markdown("### 🚧 Coming Soon")
|
| 501 |
+
gr.Markdown(
|
| 502 |
+
"This section will display comprehensive model evaluation metrics, charts, and performance analysis.")
|
| 503 |
+
|
| 504 |
+
# Placeholder content
|
| 505 |
+
with gr.Row():
|
| 506 |
+
with gr.Column():
|
| 507 |
+
gr.Markdown("#### Evaluation Metrics")
|
| 508 |
+
gr.Markdown("- Accuracy scores")
|
| 509 |
+
gr.Markdown("- Performance benchmarks")
|
| 510 |
+
gr.Markdown("- Comparative analysis")
|
| 511 |
+
|
| 512 |
+
with gr.Column():
|
| 513 |
+
gr.Markdown("#### Visualization")
|
| 514 |
+
gr.Markdown("- Performance charts")
|
| 515 |
+
gr.Markdown("- Score distributions")
|
| 516 |
+
gr.Markdown("- Trend analysis")
|
| 517 |
+
|
| 518 |
+
# TAB 6: ABOUT
|
| 519 |
+
with gr.Tab("ℹ️ About"):
|
| 520 |
+
gr.Markdown("## About Loggenix MOE Model")
|
| 521 |
+
|
| 522 |
+
gr.Markdown("""
|
| 523 |
+
### Model: `kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.2-finetuned-tool`
|
| 524 |
+
|
| 525 |
+
This is a fine-tuned Mixture of Experts (MOE) model designed for specialized AI tasks with tool calling capabilities.
|
| 526 |
+
|
| 527 |
+
#### Key Features:
|
| 528 |
+
- **Architecture**: MOE with 0.3B total parameters, 0.1B active parameters
|
| 529 |
+
- **Training**: Fine-tuned with learning rate 7e-5, batch size 16
|
| 530 |
+
- **Hardware**: Optimized for RTX 4090 GPU
|
| 531 |
+
- **Capabilities**: Tool calling, instruction following, task-specific responses
|
| 532 |
+
|
| 533 |
+
#### Model Specifications:
|
| 534 |
+
- **Total Parameters**: 0.3B
|
| 535 |
+
- **Active Parameters**: 0.1B
|
| 536 |
+
- **Context Length**: 4096 tokens
|
| 537 |
+
- **Precision**: FP16 for optimal performance
|
| 538 |
+
- **Flash Attention**: Supported for faster inference
|
| 539 |
+
|
| 540 |
+
#### Sample Inference Code:
|
| 541 |
+
```python
|
| 542 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 543 |
+
import torch
|
| 544 |
+
|
| 545 |
+
# Load model and tokenizer
|
| 546 |
+
model_id = "kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.2-finetuned-tool"
|
| 547 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 548 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 549 |
+
model_id,
|
| 550 |
+
device_map="auto",
|
| 551 |
+
torch_dtype=torch.float16,
|
| 552 |
+
attn_implementation="flash_attention_2"
|
| 553 |
+
).eval()
|
| 554 |
+
|
| 555 |
+
# Prepare messages
|
| 556 |
+
messages = [
|
| 557 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
| 558 |
+
{"role": "user", "content": "Calculate 25 + 37"}
|
| 559 |
+
]
|
| 560 |
+
|
| 561 |
+
# Format and generate
|
| 562 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 563 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 564 |
+
|
| 565 |
+
with torch.no_grad():
|
| 566 |
+
outputs = model.generate(
|
| 567 |
+
**inputs,
|
| 568 |
+
max_new_tokens=512,
|
| 569 |
+
do_sample=True,
|
| 570 |
+
temperature=0.7,
|
| 571 |
+
pad_token_id=tokenizer.pad_token_id
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 575 |
+
print(response)
|
| 576 |
+
```
|
| 577 |
+
|
| 578 |
+
#### Tool Calling Support:
|
| 579 |
+
The model supports structured tool calling for mathematical operations, data analysis, and other specialized tasks.
|
| 580 |
+
|
| 581 |
+
#### Performance Optimizations:
|
| 582 |
+
- **Speed Mode**: Max 512 new tokens for fast responses
|
| 583 |
+
- **Balanced Mode**: Max 2048 new tokens for comprehensive answers
|
| 584 |
+
- **Full Capacity**: Dynamic token allocation up to context limit
|
| 585 |
+
|
| 586 |
+
---
|
| 587 |
+
|
| 588 |
+
**Developed by**: Kshitij Thakkar
|
| 589 |
+
**Version**: v6.2
|
| 590 |
+
**License**: Please check model repository for licensing details
|
| 591 |
+
""")
|
| 592 |
+
|
| 593 |
+
# Load initial data
|
| 594 |
+
demo.load(
|
| 595 |
+
fn=read_flagged_messages,
|
| 596 |
+
outputs=[flagged_messages_display]
|
| 597 |
+
)
|
| 598 |
+
|
| 599 |
+
return demo
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
# Launch the application
|
| 603 |
+
if __name__ == "__main__":
|
| 604 |
+
print("Starting AI Tasks Evaluation Suite...")
|
| 605 |
+
demo = create_interface()
|
| 606 |
+
demo.launch(
|
| 607 |
+
server_name="0.0.0.0",
|
| 608 |
+
server_port=7860,
|
| 609 |
+
share=False,
|
| 610 |
+
debug=True
|
| 611 |
+
)
|
enhanced_app.py
ADDED
|
@@ -0,0 +1,745 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import plotly.graph_objects as go
|
| 5 |
+
import datetime
|
| 6 |
+
import json
|
| 7 |
+
import random
|
| 8 |
+
import os
|
| 9 |
+
from model_handler import generate_response, get_inference_configs
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
# Configuration for datasets
|
| 13 |
+
DATASET_CONFIGS = {
|
| 14 |
+
'Loggenix Synthetic AI Tasks Eval (with outputs)-small': {
|
| 15 |
+
'repo_id': 'kshitijthakkar/loggenix-synthetic-ai-tasks-eval-with-outputs',
|
| 16 |
+
'split': 'train'
|
| 17 |
+
},
|
| 18 |
+
'Loggenix Synthetic AI Tasks Eval (with outputs) v5-large': {
|
| 19 |
+
'repo_id': 'kshitijthakkar/loggenix-synthetic-ai-tasks-eval_v5-with-outputs',
|
| 20 |
+
'split': 'train'
|
| 21 |
+
},
|
| 22 |
+
'Loggenix Synthetic AI Tasks Eval (with outputs) v6-large': {
|
| 23 |
+
'repo_id': 'kshitijthakkar/loggenix-synthetic-ai-tasks-eval_v6-with-outputs',
|
| 24 |
+
'split': 'train'
|
| 25 |
+
}
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
# Load main dataset for inference tab
|
| 30 |
+
def load_inference_dataset():
|
| 31 |
+
"""Load the main dataset for inference use case"""
|
| 32 |
+
try:
|
| 33 |
+
print("Loading synthetic-ai-tasks-eval-v5 dataset...")
|
| 34 |
+
dataset = load_dataset(
|
| 35 |
+
'kshitijthakkar/synthetic-ai-tasks-eval-v5',
|
| 36 |
+
split='train',
|
| 37 |
+
trust_remote_code=True
|
| 38 |
+
)
|
| 39 |
+
df = dataset.to_pandas()
|
| 40 |
+
print(f"✓ Successfully loaded: {len(df)} rows, {len(df.columns)} columns")
|
| 41 |
+
return df
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"✗ Error loading dataset: {str(e)}")
|
| 44 |
+
return pd.DataFrame({'Error': [f'Failed to load: {str(e)}']})
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# Load dataset for eval samples tab
|
| 48 |
+
def load_eval_datasets():
|
| 49 |
+
"""Load all datasets for evaluation samples"""
|
| 50 |
+
datasets = {}
|
| 51 |
+
for display_name, config in DATASET_CONFIGS.items():
|
| 52 |
+
try:
|
| 53 |
+
print(f"Loading {display_name}...")
|
| 54 |
+
dataset = load_dataset(
|
| 55 |
+
config['repo_id'],
|
| 56 |
+
split=config['split'],
|
| 57 |
+
trust_remote_code=True
|
| 58 |
+
)
|
| 59 |
+
df = dataset.to_pandas()
|
| 60 |
+
datasets[display_name] = df
|
| 61 |
+
print(f"✓ Successfully loaded {display_name}: {len(df)} rows")
|
| 62 |
+
except Exception as e:
|
| 63 |
+
print(f"✗ Error loading {display_name}: {str(e)}")
|
| 64 |
+
datasets[display_name] = pd.DataFrame({
|
| 65 |
+
'Error': [f'Failed to load: {str(e)}'],
|
| 66 |
+
'Dataset': [config['repo_id']]
|
| 67 |
+
})
|
| 68 |
+
return datasets
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Load datasets
|
| 72 |
+
INFERENCE_DATASET = load_inference_dataset()
|
| 73 |
+
EVAL_DATASETS = load_eval_datasets()
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# ===== TAB 1: INFERENCE USE CASE WITH INTEGRATED FLAGGING =====
|
| 77 |
+
|
| 78 |
+
def get_task_types():
|
| 79 |
+
"""Get unique task types from inference dataset"""
|
| 80 |
+
if 'task_type' in INFERENCE_DATASET.columns:
|
| 81 |
+
task_types = INFERENCE_DATASET['task_type'].unique().tolist()
|
| 82 |
+
return [str(t) for t in task_types if pd.notna(t)]
|
| 83 |
+
return ["No task types available"]
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def get_task_by_type(task_type):
|
| 87 |
+
"""Get task content by task type"""
|
| 88 |
+
if 'task_type' in INFERENCE_DATASET.columns and 'task' in INFERENCE_DATASET.columns:
|
| 89 |
+
filtered = INFERENCE_DATASET[INFERENCE_DATASET['task_type'] == task_type]
|
| 90 |
+
if len(filtered) > 0:
|
| 91 |
+
return str(filtered.iloc[0]['task'])
|
| 92 |
+
return "No task found for this type"
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def chat_interface_with_inference(prompt, history, system_prompt, inference_config):
|
| 96 |
+
"""Enhanced chat interface with model inference and history"""
|
| 97 |
+
if not prompt.strip():
|
| 98 |
+
return history, ""
|
| 99 |
+
|
| 100 |
+
# Add user message to history
|
| 101 |
+
history.append(("You", prompt))
|
| 102 |
+
|
| 103 |
+
try:
|
| 104 |
+
if not system_prompt.strip():
|
| 105 |
+
response = "Please select a task type to load system prompt first."
|
| 106 |
+
else:
|
| 107 |
+
# Get inference configuration
|
| 108 |
+
configs = get_inference_configs()
|
| 109 |
+
config = configs.get(inference_config, configs["Optimized for Speed"])
|
| 110 |
+
|
| 111 |
+
# Run inference using the model
|
| 112 |
+
response = generate_response(
|
| 113 |
+
system_prompt=system_prompt,
|
| 114 |
+
user_input=prompt,
|
| 115 |
+
config_name=inference_config
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Format and add AI response to history
|
| 119 |
+
formatted_response = f"**AI Assistant:**\n{response}"
|
| 120 |
+
history.append(("AI Assistant", formatted_response))
|
| 121 |
+
|
| 122 |
+
except Exception as e:
|
| 123 |
+
error_msg = f"**AI Assistant:**\nError during inference: {str(e)}"
|
| 124 |
+
history.append(("AI Assistant", error_msg))
|
| 125 |
+
|
| 126 |
+
return history, ""
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def flag_response(history, flagged_message, flag_reason):
|
| 130 |
+
"""Flag a response"""
|
| 131 |
+
if not flagged_message or flagged_message == "No responses available":
|
| 132 |
+
return "Invalid message selection."
|
| 133 |
+
|
| 134 |
+
try:
|
| 135 |
+
flagged_index = int(flagged_message.split()[1][:-1])
|
| 136 |
+
if flagged_index >= len(history) or history[flagged_index][0] != "AI Assistant":
|
| 137 |
+
return "You can only flag assistant responses."
|
| 138 |
+
|
| 139 |
+
flagged_message_content = history[flagged_index][1]
|
| 140 |
+
|
| 141 |
+
log_entry = {
|
| 142 |
+
"timestamp": datetime.datetime.now().isoformat(),
|
| 143 |
+
"flag_reason": str(flag_reason),
|
| 144 |
+
"flagged_message": str(flagged_message_content),
|
| 145 |
+
"conversation_context": history,
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
os.makedirs("logs", exist_ok=True)
|
| 149 |
+
with open("logs/flagged_responses.log", "a") as f:
|
| 150 |
+
f.write(json.dumps(log_entry) + "\n")
|
| 151 |
+
|
| 152 |
+
return f"Response flagged successfully: {flag_reason}"
|
| 153 |
+
except Exception as e:
|
| 154 |
+
return f"Error flagging response: {str(e)}"
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def get_assistant_responses(history):
|
| 158 |
+
"""Get dropdown options for assistant responses"""
|
| 159 |
+
responses = [
|
| 160 |
+
f"Response {i}: {str(msg[1])[:50]}..."
|
| 161 |
+
for i, msg in enumerate(history)
|
| 162 |
+
if msg[0] == "AI Assistant"
|
| 163 |
+
]
|
| 164 |
+
|
| 165 |
+
if not responses:
|
| 166 |
+
responses = ["No responses available"]
|
| 167 |
+
|
| 168 |
+
return gr.update(choices=responses, value=responses[0] if responses else "No responses available")
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def display_selected_message(selected_index, history):
|
| 172 |
+
"""Display the selected flagged message"""
|
| 173 |
+
if selected_index == "No responses available":
|
| 174 |
+
return "No responses available"
|
| 175 |
+
|
| 176 |
+
try:
|
| 177 |
+
flagged_index = int(selected_index.split()[1][:-1])
|
| 178 |
+
if flagged_index < len(history) and history[flagged_index][0] == "AI Assistant":
|
| 179 |
+
return history[flagged_index][1]
|
| 180 |
+
else:
|
| 181 |
+
return "Invalid selection."
|
| 182 |
+
except Exception as e:
|
| 183 |
+
return f"Error: {str(e)}"
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def clear_inference_history():
|
| 187 |
+
"""Clear chat history for inference tab"""
|
| 188 |
+
return [], gr.update(choices=["No responses available"], value="No responses available")
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
# ===== TAB 2: EVAL SAMPLES =====
|
| 192 |
+
|
| 193 |
+
def update_eval_table(dataset_name):
|
| 194 |
+
"""Update eval table based on selected dataset"""
|
| 195 |
+
if dataset_name in EVAL_DATASETS:
|
| 196 |
+
return EVAL_DATASETS[dataset_name].head(100)
|
| 197 |
+
return pd.DataFrame()
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def get_eval_dataset_info(dataset_name):
|
| 201 |
+
"""Get info about selected eval dataset"""
|
| 202 |
+
if dataset_name in EVAL_DATASETS:
|
| 203 |
+
df = EVAL_DATASETS[dataset_name]
|
| 204 |
+
return f"""
|
| 205 |
+
**Dataset**: {dataset_name}
|
| 206 |
+
- **Rows**: {len(df):,}
|
| 207 |
+
- **Columns**: {len(df.columns)}
|
| 208 |
+
- **Column Names**: {', '.join(df.columns.tolist())}
|
| 209 |
+
"""
|
| 210 |
+
return "No dataset selected"
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def get_task_types_for_eval(dataset_name):
|
| 214 |
+
"""Get unique task types from selected eval dataset"""
|
| 215 |
+
if dataset_name in EVAL_DATASETS and 'task_type' in EVAL_DATASETS[dataset_name].columns:
|
| 216 |
+
task_types = EVAL_DATASETS[dataset_name]['task_type'].unique().tolist()
|
| 217 |
+
return [str(t) for t in task_types if pd.notna(t)]
|
| 218 |
+
return ["No task types available"]
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def get_tasks_by_type_eval(dataset_name, task_type):
|
| 222 |
+
"""Get tasks filtered by dataset and task type"""
|
| 223 |
+
if (dataset_name in EVAL_DATASETS and
|
| 224 |
+
'task_type' in EVAL_DATASETS[dataset_name].columns and
|
| 225 |
+
'task' in EVAL_DATASETS[dataset_name].columns):
|
| 226 |
+
|
| 227 |
+
filtered = EVAL_DATASETS[dataset_name][EVAL_DATASETS[dataset_name]['task_type'] == task_type]
|
| 228 |
+
if len(filtered) > 0:
|
| 229 |
+
# Create display options with index and truncated task content
|
| 230 |
+
tasks = []
|
| 231 |
+
for idx, row in filtered.iterrows():
|
| 232 |
+
task_preview = str(row['task'])[:100] + "..." if len(str(row['task'])) > 100 else str(row['task'])
|
| 233 |
+
tasks.append(f"Row {idx}: {task_preview}")
|
| 234 |
+
return tasks
|
| 235 |
+
return ["No tasks found"]
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
def get_selected_row_data(dataset_name, task_type, selected_task):
|
| 239 |
+
"""Get all data for the selected row"""
|
| 240 |
+
if not selected_task or selected_task == "No tasks found":
|
| 241 |
+
return "", "", "", "", "", "",""
|
| 242 |
+
|
| 243 |
+
try:
|
| 244 |
+
# Extract row index from selected_task
|
| 245 |
+
row_idx = int(selected_task.split("Row ")[1].split(":")[0])
|
| 246 |
+
|
| 247 |
+
if dataset_name in EVAL_DATASETS:
|
| 248 |
+
df = EVAL_DATASETS[dataset_name]
|
| 249 |
+
if row_idx in df.index:
|
| 250 |
+
row = df.loc[row_idx]
|
| 251 |
+
|
| 252 |
+
# Extract all fields with safe handling for missing columns
|
| 253 |
+
task = str(row.get('task', 'N/A'))
|
| 254 |
+
task_type_val = str(row.get('task_type', 'N/A'))
|
| 255 |
+
input_model = str(row.get('input_model', 'N/A'))
|
| 256 |
+
expected_response = str(row.get('expected_response', 'N/A'))
|
| 257 |
+
loggenix_output = str(row.get('loggenix_output', 'N/A'))
|
| 258 |
+
output_model = str(row.get('output_model', 'N/A'))
|
| 259 |
+
input_text = str(row.get('input', 'N/A'))
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
return task_type_val, input_model, output_model, task, input_text, expected_response, loggenix_output
|
| 263 |
+
|
| 264 |
+
except Exception as e:
|
| 265 |
+
return f"Error: {str(e)}", "", "", "", "", "", "", ""
|
| 266 |
+
|
| 267 |
+
return "", "", "", "", "", "", ""
|
| 268 |
+
|
| 269 |
+
# ===== TAB 3: VIEW FLAGGED RESPONSES =====
|
| 270 |
+
|
| 271 |
+
def read_flagged_messages():
|
| 272 |
+
"""Read flagged messages from log file"""
|
| 273 |
+
try:
|
| 274 |
+
if not os.path.exists("logs/flagged_responses.log"):
|
| 275 |
+
return pd.DataFrame()
|
| 276 |
+
|
| 277 |
+
with open("logs/flagged_responses.log", "r") as f:
|
| 278 |
+
flagged_messages = f.readlines()
|
| 279 |
+
|
| 280 |
+
if not flagged_messages:
|
| 281 |
+
return pd.DataFrame()
|
| 282 |
+
|
| 283 |
+
table_data = []
|
| 284 |
+
for entry in flagged_messages:
|
| 285 |
+
data = json.loads(entry)
|
| 286 |
+
table_data.append({
|
| 287 |
+
"Timestamp": data.get("timestamp", "N/A"),
|
| 288 |
+
"Flag Reason": data.get("flag_reason", "N/A"),
|
| 289 |
+
"Flagged Message": data.get("flagged_message", "N/A")[:100] + "...",
|
| 290 |
+
"Conversation Context": str(len(data.get("conversation_context", []))) + " messages"
|
| 291 |
+
})
|
| 292 |
+
return pd.DataFrame(table_data)
|
| 293 |
+
except Exception as e:
|
| 294 |
+
return pd.DataFrame({"Error": [f"Error reading flagged messages: {str(e)}"]})
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
def handle_row_select(evt: gr.SelectData):
|
| 298 |
+
"""Handle row selection in flagged messages table"""
|
| 299 |
+
try:
|
| 300 |
+
if not os.path.exists("logs/flagged_responses.log"):
|
| 301 |
+
return []
|
| 302 |
+
|
| 303 |
+
with open("logs/flagged_responses.log", "r") as f:
|
| 304 |
+
flagged_messages_log = f.readlines()
|
| 305 |
+
|
| 306 |
+
if evt.index[0] < len(flagged_messages_log):
|
| 307 |
+
selected_entry = json.loads(flagged_messages_log[evt.index[0]])
|
| 308 |
+
conversation_context = selected_entry.get("conversation_context", [])
|
| 309 |
+
return conversation_context
|
| 310 |
+
return []
|
| 311 |
+
except Exception as e:
|
| 312 |
+
return [("System", f"Error loading conversation: {str(e)}")]
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
# ===== MAIN INTERFACE =====
|
| 316 |
+
|
| 317 |
+
def create_interface():
|
| 318 |
+
with gr.Blocks(title="AI Tasks Evaluation Suite", theme=gr.themes.Soft()) as demo:
|
| 319 |
+
gr.Markdown("# 🤖 AI Tasks Evaluation Suite")
|
| 320 |
+
gr.Markdown("Comprehensive platform for AI model evaluation and testing")
|
| 321 |
+
|
| 322 |
+
with gr.Tabs():
|
| 323 |
+
# TAB 1: INFERENCE USE CASE WITH INTEGRATED FLAGGING
|
| 324 |
+
with gr.Tab("🚀 Inference Use Case"):
|
| 325 |
+
gr.Markdown("## Model Inference Testing with Response Flagging")
|
| 326 |
+
|
| 327 |
+
with gr.Row():
|
| 328 |
+
with gr.Column(scale=1):
|
| 329 |
+
# Task type dropdown
|
| 330 |
+
task_type_dropdown = gr.Dropdown(
|
| 331 |
+
choices=get_task_types(),
|
| 332 |
+
value=get_task_types()[0] if get_task_types() else None,
|
| 333 |
+
label="Task Type",
|
| 334 |
+
info="Select task type to load system prompt"
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
# Inference configuration
|
| 338 |
+
inference_config = gr.Dropdown(
|
| 339 |
+
choices=list(get_inference_configs().keys()),
|
| 340 |
+
value="Optimized for Speed",
|
| 341 |
+
label="Inference Configuration",
|
| 342 |
+
info="Select inference optimization level"
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
with gr.Column(scale=2):
|
| 346 |
+
# System prompt (editable)
|
| 347 |
+
system_prompt = gr.Textbox(
|
| 348 |
+
label="System Prompt (Editable)",
|
| 349 |
+
lines=6,
|
| 350 |
+
max_lines=10,
|
| 351 |
+
placeholder="Select a task type to load system prompt...",
|
| 352 |
+
interactive=True
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
# Chat interface section
|
| 356 |
+
gr.Markdown("### 💬 Chat Interface")
|
| 357 |
+
with gr.Row():
|
| 358 |
+
with gr.Column(scale=2):
|
| 359 |
+
# Chat display (replacing the old textbox)
|
| 360 |
+
chat_display = gr.Chatbot(label="Conversation History", height=400)
|
| 361 |
+
chat_history_state = gr.State([])
|
| 362 |
+
|
| 363 |
+
# Chat input
|
| 364 |
+
with gr.Row():
|
| 365 |
+
chat_input = gr.Textbox(
|
| 366 |
+
placeholder="Enter your message here...",
|
| 367 |
+
label="Your Message",
|
| 368 |
+
scale=4
|
| 369 |
+
)
|
| 370 |
+
send_btn = gr.Button("Send", variant="primary", scale=1)
|
| 371 |
+
|
| 372 |
+
with gr.Row():
|
| 373 |
+
clear_chat_btn = gr.Button("🗑️ Clear History", variant="secondary")
|
| 374 |
+
|
| 375 |
+
# Flagging section
|
| 376 |
+
with gr.Column(scale=1):
|
| 377 |
+
gr.Markdown("### 🚩 Flag Response")
|
| 378 |
+
|
| 379 |
+
flagged_message_index = gr.Dropdown(
|
| 380 |
+
label="Select a response to flag",
|
| 381 |
+
choices=["No responses available"],
|
| 382 |
+
value="No responses available",
|
| 383 |
+
interactive=True
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
selected_message_display = gr.Textbox(
|
| 387 |
+
label="Selected Response",
|
| 388 |
+
interactive=False,
|
| 389 |
+
lines=4,
|
| 390 |
+
max_lines=6
|
| 391 |
+
)
|
| 392 |
+
|
| 393 |
+
flag_reason = gr.Textbox(
|
| 394 |
+
placeholder="Enter reason for flagging...",
|
| 395 |
+
label="Reason for Flagging"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
flag_btn = gr.Button("🚩 Flag Response", variant="stop")
|
| 399 |
+
flag_output = gr.Textbox(label="Flagging Status", visible=True, lines=2)
|
| 400 |
+
|
| 401 |
+
# Event handlers for Tab 1
|
| 402 |
+
task_type_dropdown.change(
|
| 403 |
+
fn=get_task_by_type,
|
| 404 |
+
inputs=[task_type_dropdown],
|
| 405 |
+
outputs=[system_prompt]
|
| 406 |
+
)
|
| 407 |
+
|
| 408 |
+
# Chat functionality
|
| 409 |
+
send_btn.click(
|
| 410 |
+
chat_interface_with_inference,
|
| 411 |
+
inputs=[chat_input, chat_history_state, system_prompt, inference_config],
|
| 412 |
+
outputs=[chat_display, chat_input]
|
| 413 |
+
).then(
|
| 414 |
+
lambda x: x, # Update state
|
| 415 |
+
inputs=[chat_display],
|
| 416 |
+
outputs=[chat_history_state]
|
| 417 |
+
).then(
|
| 418 |
+
get_assistant_responses,
|
| 419 |
+
inputs=[chat_history_state],
|
| 420 |
+
outputs=[flagged_message_index]
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
# Enter key support for chat input
|
| 424 |
+
chat_input.submit(
|
| 425 |
+
chat_interface_with_inference,
|
| 426 |
+
inputs=[chat_input, chat_history_state, system_prompt, inference_config],
|
| 427 |
+
outputs=[chat_display, chat_input]
|
| 428 |
+
).then(
|
| 429 |
+
lambda x: x, # Update state
|
| 430 |
+
inputs=[chat_display],
|
| 431 |
+
outputs=[chat_history_state]
|
| 432 |
+
).then(
|
| 433 |
+
get_assistant_responses,
|
| 434 |
+
inputs=[chat_history_state],
|
| 435 |
+
outputs=[flagged_message_index]
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
clear_chat_btn.click(
|
| 439 |
+
clear_inference_history,
|
| 440 |
+
outputs=[chat_display, flagged_message_index]
|
| 441 |
+
).then(
|
| 442 |
+
lambda: [],
|
| 443 |
+
outputs=[chat_history_state]
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
# Flagging functionality
|
| 447 |
+
flagged_message_index.change(
|
| 448 |
+
display_selected_message,
|
| 449 |
+
inputs=[flagged_message_index, chat_history_state],
|
| 450 |
+
outputs=[selected_message_display]
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
flag_btn.click(
|
| 454 |
+
flag_response,
|
| 455 |
+
inputs=[chat_history_state, flagged_message_index, flag_reason],
|
| 456 |
+
outputs=[flag_output]
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
# TAB 2: EVAL SAMPLES
|
| 460 |
+
with gr.Tab("📊 Eval Samples"):
|
| 461 |
+
gr.Markdown("## Dataset Evaluation Samples")
|
| 462 |
+
|
| 463 |
+
with gr.Row():
|
| 464 |
+
with gr.Column(scale=1):
|
| 465 |
+
eval_dataset_dropdown = gr.Dropdown(
|
| 466 |
+
choices=list(EVAL_DATASETS.keys()),
|
| 467 |
+
value=list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else None,
|
| 468 |
+
label="Select Dataset",
|
| 469 |
+
info="Choose evaluation dataset to view"
|
| 470 |
+
)
|
| 471 |
+
|
| 472 |
+
eval_dataset_info = gr.Markdown(
|
| 473 |
+
get_eval_dataset_info(list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else "")
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
with gr.Row():
|
| 477 |
+
eval_table = gr.Dataframe(
|
| 478 |
+
value=update_eval_table(list(EVAL_DATASETS.keys())[0]) if EVAL_DATASETS else pd.DataFrame(),
|
| 479 |
+
label="Dataset Table",
|
| 480 |
+
max_height=800,
|
| 481 |
+
min_width=800,
|
| 482 |
+
interactive=True,
|
| 483 |
+
wrap=True,
|
| 484 |
+
show_fullscreen_button=True,
|
| 485 |
+
show_copy_button=True,
|
| 486 |
+
show_row_numbers=True,
|
| 487 |
+
show_search="search",
|
| 488 |
+
column_widths=["80px","80px","80px","150px","250px","250px","250px"]
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
# Event handlers for Tab 2
|
| 492 |
+
eval_dataset_dropdown.change(
|
| 493 |
+
fn=lambda x: (update_eval_table(x), get_eval_dataset_info(x)),
|
| 494 |
+
inputs=[eval_dataset_dropdown],
|
| 495 |
+
outputs=[eval_table, eval_dataset_info]
|
| 496 |
+
)
|
| 497 |
+
with gr.Tab("📊 Eval Samples 2"):
|
| 498 |
+
gr.Markdown("## Dataset Evaluation Samples")
|
| 499 |
+
gr.Markdown("Select dataset, task type, and specific task to view detailed information")
|
| 500 |
+
|
| 501 |
+
with gr.Row():
|
| 502 |
+
with gr.Column(scale=1):
|
| 503 |
+
eval_dataset_dropdown = gr.Dropdown(
|
| 504 |
+
choices=list(EVAL_DATASETS.keys()),
|
| 505 |
+
value=list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else None,
|
| 506 |
+
label="Select Dataset",
|
| 507 |
+
info="Choose evaluation dataset to view"
|
| 508 |
+
)
|
| 509 |
+
|
| 510 |
+
eval_task_type_dropdown = gr.Dropdown(
|
| 511 |
+
choices=[],
|
| 512 |
+
label="Select Task Type",
|
| 513 |
+
info="Choose task type from selected dataset"
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
eval_task_dropdown = gr.Dropdown(
|
| 517 |
+
choices=[],
|
| 518 |
+
label="Select Specific Task",
|
| 519 |
+
info="Choose specific task to view details"
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
with gr.Column(scale=1):
|
| 523 |
+
eval_dataset_info = gr.Markdown(
|
| 524 |
+
get_eval_dataset_info(list(EVAL_DATASETS.keys())[0] if EVAL_DATASETS else "")
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
# Task details section
|
| 528 |
+
gr.Markdown("### Task Details")
|
| 529 |
+
|
| 530 |
+
with gr.Row():
|
| 531 |
+
with gr.Column():
|
| 532 |
+
task_field = gr.Textbox(
|
| 533 |
+
label="Task",
|
| 534 |
+
lines=8,
|
| 535 |
+
max_lines=12,
|
| 536 |
+
interactive=False
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
task_type_field = gr.Textbox(
|
| 540 |
+
label="Task Type",
|
| 541 |
+
lines=1,
|
| 542 |
+
interactive=False
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
input_model_field = gr.Textbox(
|
| 546 |
+
label="input_model",
|
| 547 |
+
lines=1,
|
| 548 |
+
interactive=False
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
input_field = gr.Textbox(
|
| 552 |
+
label="input",
|
| 553 |
+
lines=8,
|
| 554 |
+
max_lines=12,
|
| 555 |
+
interactive=False
|
| 556 |
+
)
|
| 557 |
+
output_model_field = gr.Textbox(
|
| 558 |
+
label="output_model",
|
| 559 |
+
lines=1,
|
| 560 |
+
interactive=False
|
| 561 |
+
)
|
| 562 |
+
|
| 563 |
+
# Large text fields for outputs side by side
|
| 564 |
+
gr.Markdown("### Expected vs Actual Response Comparison")
|
| 565 |
+
|
| 566 |
+
with gr.Row():
|
| 567 |
+
expected_response_field = gr.Textbox(
|
| 568 |
+
label="Expected Response",
|
| 569 |
+
lines=30,
|
| 570 |
+
max_lines=40,
|
| 571 |
+
interactive=False
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
loggenix_output_field = gr.Textbox(
|
| 575 |
+
label="Loggenix Output",
|
| 576 |
+
lines=30,
|
| 577 |
+
max_lines=40,
|
| 578 |
+
interactive=False
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
# Event handlers for Tab 2
|
| 582 |
+
eval_dataset_dropdown.change(
|
| 583 |
+
fn=lambda x: (get_eval_dataset_info(x), get_task_types_for_eval(x), []),
|
| 584 |
+
inputs=[eval_dataset_dropdown],
|
| 585 |
+
outputs=[eval_dataset_info, eval_task_type_dropdown, eval_task_dropdown]
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
eval_task_type_dropdown.change(
|
| 589 |
+
fn=get_tasks_by_type_eval,
|
| 590 |
+
inputs=[eval_dataset_dropdown, eval_task_type_dropdown],
|
| 591 |
+
outputs=[eval_task_dropdown]
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
eval_task_dropdown.change(
|
| 595 |
+
fn=get_selected_row_data,
|
| 596 |
+
inputs=[eval_dataset_dropdown, eval_task_type_dropdown, eval_task_dropdown],
|
| 597 |
+
outputs=[task_type_field, input_model_field, output_model_field, task_field, input_field,
|
| 598 |
+
loggenix_output_field, expected_response_field]
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
# TAB 3: VIEW FLAGGED RESPONSES (RENAMED FROM TAB 4)
|
| 602 |
+
with gr.Tab("👀 View Flagged Responses"):
|
| 603 |
+
gr.Markdown("## Review Flagged Responses")
|
| 604 |
+
|
| 605 |
+
with gr.Row():
|
| 606 |
+
with gr.Column():
|
| 607 |
+
flagged_messages_display = gr.Dataframe(
|
| 608 |
+
headers=["Timestamp", "Flag Reason", "Flagged Message", "Conversation Context"],
|
| 609 |
+
interactive=False,
|
| 610 |
+
max_height=400
|
| 611 |
+
)
|
| 612 |
+
refresh_btn = gr.Button("🔄 Refresh", variant="primary")
|
| 613 |
+
|
| 614 |
+
with gr.Column():
|
| 615 |
+
conversation_context_display = gr.Chatbot(
|
| 616 |
+
label="Conversation Context",
|
| 617 |
+
height=400
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
# Event handlers for Tab 3
|
| 621 |
+
flagged_messages_display.select(
|
| 622 |
+
handle_row_select,
|
| 623 |
+
outputs=[conversation_context_display]
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
refresh_btn.click(
|
| 627 |
+
read_flagged_messages,
|
| 628 |
+
outputs=[flagged_messages_display]
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
# TAB 4: MODEL EVAL RESULTS (MOVED FROM TAB 5)
|
| 632 |
+
with gr.Tab("📈 Model Eval Results"):
|
| 633 |
+
gr.Markdown("## Model Evaluation Results")
|
| 634 |
+
gr.Markdown("### 🚧 Coming Soon")
|
| 635 |
+
gr.Markdown(
|
| 636 |
+
"This section will display comprehensive model evaluation metrics, charts, and performance analysis.")
|
| 637 |
+
|
| 638 |
+
# Placeholder content
|
| 639 |
+
with gr.Row():
|
| 640 |
+
with gr.Column():
|
| 641 |
+
gr.Markdown("#### Evaluation Metrics")
|
| 642 |
+
gr.Markdown("- Accuracy scores")
|
| 643 |
+
gr.Markdown("- Performance benchmarks")
|
| 644 |
+
gr.Markdown("- Comparative analysis")
|
| 645 |
+
|
| 646 |
+
with gr.Column():
|
| 647 |
+
gr.Markdown("#### Visualization")
|
| 648 |
+
gr.Markdown("- Performance charts")
|
| 649 |
+
gr.Markdown("- Score distributions")
|
| 650 |
+
gr.Markdown("- Trend analysis")
|
| 651 |
+
|
| 652 |
+
# TAB 5: ABOUT (MOVED FROM TAB 6)
|
| 653 |
+
with gr.Tab("ℹ️ About"):
|
| 654 |
+
gr.Markdown("## About Loggenix MOE Model")
|
| 655 |
+
|
| 656 |
+
gr.Markdown("""
|
| 657 |
+
### Model: `kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.2-finetuned-tool`
|
| 658 |
+
|
| 659 |
+
This is a fine-tuned Mixture of Experts (MOE) model designed for specialized AI tasks with tool calling capabilities.
|
| 660 |
+
|
| 661 |
+
#### Key Features:
|
| 662 |
+
- **Architecture**: MOE with 0.3B total parameters, 0.1B active parameters
|
| 663 |
+
- **Training**: Fine-tuned with learning rate 7e-5, batch size 16
|
| 664 |
+
- **Hardware**: Optimized for RTX 4090 GPU
|
| 665 |
+
- **Capabilities**: Tool calling, instruction following, task-specific responses
|
| 666 |
+
|
| 667 |
+
#### Model Specifications:
|
| 668 |
+
- **Total Parameters**: 0.3B
|
| 669 |
+
- **Active Parameters**: 0.1B
|
| 670 |
+
- **Context Length**: 4096 tokens
|
| 671 |
+
- **Precision**: FP16 for optimal performance
|
| 672 |
+
- **Flash Attention**: Supported for faster inference
|
| 673 |
+
|
| 674 |
+
#### Sample Inference Code:
|
| 675 |
+
```python
|
| 676 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 677 |
+
import torch
|
| 678 |
+
|
| 679 |
+
# Load model and tokenizer
|
| 680 |
+
model_id = "kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.2-finetuned-tool"
|
| 681 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 682 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 683 |
+
model_id,
|
| 684 |
+
device_map="auto",
|
| 685 |
+
torch_dtype=torch.float16,
|
| 686 |
+
attn_implementation="flash_attention_2"
|
| 687 |
+
).eval()
|
| 688 |
+
|
| 689 |
+
# Prepare messages
|
| 690 |
+
messages = [
|
| 691 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
| 692 |
+
{"role": "user", "content": "Calculate 25 + 37"}
|
| 693 |
+
]
|
| 694 |
+
|
| 695 |
+
# Format and generate
|
| 696 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 697 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 698 |
+
|
| 699 |
+
with torch.no_grad():
|
| 700 |
+
outputs = model.generate(
|
| 701 |
+
**inputs,
|
| 702 |
+
max_new_tokens=512,
|
| 703 |
+
do_sample=True,
|
| 704 |
+
temperature=0.7,
|
| 705 |
+
pad_token_id=tokenizer.pad_token_id
|
| 706 |
+
)
|
| 707 |
+
|
| 708 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 709 |
+
print(response)
|
| 710 |
+
```
|
| 711 |
+
|
| 712 |
+
#### Tool Calling Support:
|
| 713 |
+
The model supports structured tool calling for mathematical operations, data analysis, and other specialized tasks.
|
| 714 |
+
|
| 715 |
+
#### Performance Optimizations:
|
| 716 |
+
- **Speed Mode**: Max 512 new tokens for fast responses
|
| 717 |
+
- **Balanced Mode**: Max 2048 new tokens for comprehensive answers
|
| 718 |
+
- **Full Capacity**: Dynamic token allocation up to context limit
|
| 719 |
+
|
| 720 |
+
---
|
| 721 |
+
|
| 722 |
+
**Developed by**: Kshitij Thakkar
|
| 723 |
+
**Version**: v6.2
|
| 724 |
+
**License**: Please check model repository for licensing details
|
| 725 |
+
""")
|
| 726 |
+
|
| 727 |
+
# Load initial data
|
| 728 |
+
demo.load(
|
| 729 |
+
fn=read_flagged_messages,
|
| 730 |
+
outputs=[flagged_messages_display]
|
| 731 |
+
)
|
| 732 |
+
|
| 733 |
+
return demo
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
# Launch the application
|
| 737 |
+
if __name__ == "__main__":
|
| 738 |
+
print("Starting AI Tasks Evaluation Suite...")
|
| 739 |
+
demo = create_interface()
|
| 740 |
+
demo.launch(
|
| 741 |
+
server_name="0.0.0.0",
|
| 742 |
+
server_port=7860,
|
| 743 |
+
share=False,
|
| 744 |
+
debug=True
|
| 745 |
+
)
|
model_handler.py
ADDED
|
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import time
|
| 3 |
+
import gc
|
| 4 |
+
import json
|
| 5 |
+
import re
|
| 6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
| 7 |
+
from typing import Dict, Any, Optional
|
| 8 |
+
|
| 9 |
+
# Performance optimizations
|
| 10 |
+
torch.backends.cudnn.benchmark = True
|
| 11 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 12 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 13 |
+
|
| 14 |
+
# Global model and tokenizer variables
|
| 15 |
+
model = None
|
| 16 |
+
tokenizer = None
|
| 17 |
+
MODEL_ID = "kshitijthakkar/loggenix-moe-0.3B-A0.1B-e3-lr7e5-b16-4090-v6.2-finetuned-tool"
|
| 18 |
+
|
| 19 |
+
# Inference configurations
|
| 20 |
+
INFERENCE_CONFIGS = {
|
| 21 |
+
"Optimized for Speed": {
|
| 22 |
+
"max_new_tokens_base": 512,
|
| 23 |
+
"max_new_tokens_cap": 512,
|
| 24 |
+
"min_tokens": 50,
|
| 25 |
+
"temperature": 0.7,
|
| 26 |
+
"top_p": 0.9,
|
| 27 |
+
"do_sample": True,
|
| 28 |
+
"use_cache": False,
|
| 29 |
+
"description": "Fast responses with limited output length"
|
| 30 |
+
},
|
| 31 |
+
"Middle-ground": {
|
| 32 |
+
"max_new_tokens_base": 2048,
|
| 33 |
+
"max_new_tokens_cap": 2048,
|
| 34 |
+
"min_tokens": 50,
|
| 35 |
+
"temperature": 0.7,
|
| 36 |
+
"top_p": 0.9,
|
| 37 |
+
"do_sample": True,
|
| 38 |
+
"use_cache": False,
|
| 39 |
+
"description": "Balanced performance and output quality"
|
| 40 |
+
},
|
| 41 |
+
"Full Capacity": {
|
| 42 |
+
"max_new_tokens_base": 4096,
|
| 43 |
+
"max_new_tokens_cap": 4096,
|
| 44 |
+
"min_tokens": 1,
|
| 45 |
+
"temperature": 0.7,
|
| 46 |
+
"top_p": 0.9,
|
| 47 |
+
"do_sample": True,
|
| 48 |
+
"use_cache": False,
|
| 49 |
+
"description": "Maximum output length with dynamic allocation"
|
| 50 |
+
}
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_inference_configs():
|
| 55 |
+
"""Get available inference configurations"""
|
| 56 |
+
return INFERENCE_CONFIGS
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def load_model():
|
| 60 |
+
"""Load model and tokenizer with optimizations"""
|
| 61 |
+
global model, tokenizer
|
| 62 |
+
|
| 63 |
+
if model is not None and tokenizer is not None:
|
| 64 |
+
return model, tokenizer
|
| 65 |
+
|
| 66 |
+
print("Loading tokenizer...")
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 68 |
+
|
| 69 |
+
## load 8 bit quants
|
| 70 |
+
quantization_config = BitsAndBytesConfig(
|
| 71 |
+
load_in_8bit=True,
|
| 72 |
+
llm_int8_threshold=6.0,
|
| 73 |
+
llm_int8_has_fp16_weight=False,
|
| 74 |
+
)
|
| 75 |
+
# # Or 4-bit for even more memory savings
|
| 76 |
+
# quantization_config = BitsAndBytesConfig(
|
| 77 |
+
# load_in_4bit=True,
|
| 78 |
+
# bnb_4bit_compute_dtype=torch.float16,
|
| 79 |
+
# bnb_4bit_quant_type="nf4",
|
| 80 |
+
# bnb_4bit_use_double_quant=True,
|
| 81 |
+
# )
|
| 82 |
+
|
| 83 |
+
print("Loading model...")
|
| 84 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 85 |
+
MODEL_ID,
|
| 86 |
+
device_map="auto",
|
| 87 |
+
dtype=torch.float16, # Use half precision for speed
|
| 88 |
+
attn_implementation="flash_attention_2" if hasattr(torch.nn, 'scaled_dot_product_attention') else None,
|
| 89 |
+
use_cache=True,
|
| 90 |
+
quantization_config=quantization_config,
|
| 91 |
+
).eval()
|
| 92 |
+
|
| 93 |
+
# Enable gradient checkpointing if available
|
| 94 |
+
if hasattr(model, 'gradient_checkpointing_enable'):
|
| 95 |
+
model.gradient_checkpointing_enable()
|
| 96 |
+
|
| 97 |
+
# Set pad_token_id
|
| 98 |
+
if model.config.pad_token_id is None and tokenizer.pad_token_id is not None:
|
| 99 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
| 100 |
+
|
| 101 |
+
# Set padding side to left for better batching
|
| 102 |
+
tokenizer.padding_side = "left"
|
| 103 |
+
|
| 104 |
+
memory = model.get_memory_footprint() / 1e6
|
| 105 |
+
print(f"Memory footprint: {memory:,.1f} MB")
|
| 106 |
+
|
| 107 |
+
return model, tokenizer
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# ===== TOOL DEFINITIONS =====
|
| 111 |
+
|
| 112 |
+
def calculate_numbers(operation: str, num1: float, num2: float) -> Dict[str, Any]:
|
| 113 |
+
"""
|
| 114 |
+
Sample tool to perform basic mathematical operations on two numbers.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
operation: The operation to perform ('add', 'subtract', 'multiply', 'divide')
|
| 118 |
+
num1: First number
|
| 119 |
+
num2: Second number
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
Dictionary with result and operation details
|
| 123 |
+
"""
|
| 124 |
+
try:
|
| 125 |
+
num1, num2 = float(num1), float(num2)
|
| 126 |
+
|
| 127 |
+
if operation.lower() == 'add':
|
| 128 |
+
result = num1 + num2
|
| 129 |
+
elif operation.lower() == 'subtract':
|
| 130 |
+
result = num1 - num2
|
| 131 |
+
elif operation.lower() == 'multiply':
|
| 132 |
+
result = num1 * num2
|
| 133 |
+
elif operation.lower() == 'divide':
|
| 134 |
+
if num2 == 0:
|
| 135 |
+
return {"error": "Division by zero is not allowed"}
|
| 136 |
+
result = num1 / num2
|
| 137 |
+
else:
|
| 138 |
+
return {"error": f"Unknown operation: {operation}"}
|
| 139 |
+
|
| 140 |
+
return {
|
| 141 |
+
"result": result,
|
| 142 |
+
"operation": operation,
|
| 143 |
+
"operands": [num1, num2],
|
| 144 |
+
"formatted": f"{num1} {operation} {num2} = {result}"
|
| 145 |
+
}
|
| 146 |
+
except ValueError as e:
|
| 147 |
+
return {"error": f"Invalid number format: {str(e)}"}
|
| 148 |
+
except Exception as e:
|
| 149 |
+
return {"error": f"Calculation error: {str(e)}"}
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
# Tool registry
|
| 153 |
+
AVAILABLE_TOOLS = {
|
| 154 |
+
"calculate_numbers": {
|
| 155 |
+
"function": calculate_numbers,
|
| 156 |
+
"description": "Perform basic mathematical operations (add, subtract, multiply, divide) on two numbers",
|
| 157 |
+
"parameters": {
|
| 158 |
+
"operation": "The mathematical operation to perform",
|
| 159 |
+
"num1": "First number",
|
| 160 |
+
"num2": "Second number"
|
| 161 |
+
}
|
| 162 |
+
}
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def execute_tool_call(tool_name: str, **kwargs) -> Dict[str, Any]:
|
| 167 |
+
"""Execute a tool call with given parameters"""
|
| 168 |
+
print(f"Executing tool: {tool_name} with parameters: {kwargs}")
|
| 169 |
+
if tool_name not in AVAILABLE_TOOLS:
|
| 170 |
+
return {"error": f"Unknown tool: {tool_name}"}
|
| 171 |
+
|
| 172 |
+
try:
|
| 173 |
+
tool_function = AVAILABLE_TOOLS[tool_name]["function"]
|
| 174 |
+
result = tool_function(**kwargs)
|
| 175 |
+
return {
|
| 176 |
+
"tool_name": tool_name,
|
| 177 |
+
"parameters": kwargs,
|
| 178 |
+
"result": result
|
| 179 |
+
}
|
| 180 |
+
except Exception as e:
|
| 181 |
+
print(f"Tool execution failed: {str(e)}")
|
| 182 |
+
return {
|
| 183 |
+
"tool_name": tool_name,
|
| 184 |
+
"parameters": kwargs,
|
| 185 |
+
"error": f"Tool execution error: {str(e)}"
|
| 186 |
+
}
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# def parse_tool_calls(text: str) -> list:
|
| 190 |
+
# """
|
| 191 |
+
# Parse tool calls from model output.
|
| 192 |
+
# Expected format: [TOOL_CALL:tool_name(param1=value1, param2=value2)]
|
| 193 |
+
# """
|
| 194 |
+
# tool_calls = []
|
| 195 |
+
# #pattern = r'\[TOOL_CALL:(\w+)\((.*?)\)\]'
|
| 196 |
+
# pattern = r'(\[TOOL_CALL:(\w+)\((.*?)\)\]|<tool_call>\s*{"name":\s*"(\w+)",\s*"parameters":\s*{([^}]*)}\s*}\s*</tool_call>)'
|
| 197 |
+
# matches = re.findall(pattern, text)
|
| 198 |
+
# print(matches)
|
| 199 |
+
#
|
| 200 |
+
# for tool_name, params_str in matches:
|
| 201 |
+
# try:
|
| 202 |
+
# params = {}
|
| 203 |
+
# if params_str.strip():
|
| 204 |
+
# param_pairs = params_str.split(',')
|
| 205 |
+
# for pair in param_pairs:
|
| 206 |
+
# if '=' in pair:
|
| 207 |
+
# key, value = pair.split('=', 1)
|
| 208 |
+
# key = key.strip()
|
| 209 |
+
# value = value.strip().strip('"\'') # Remove quotes
|
| 210 |
+
# params[key] = value
|
| 211 |
+
# tool_calls.append({
|
| 212 |
+
# "tool_name": tool_name,
|
| 213 |
+
# "parameters": params,
|
| 214 |
+
# "original_call": f"[TOOL_CALL:{tool_name}({params_str})]" # Store original call for replacement
|
| 215 |
+
# })
|
| 216 |
+
# except Exception as e:
|
| 217 |
+
# print(f"Error parsing tool call '{tool_name}({params_str})': {e}")
|
| 218 |
+
# continue
|
| 219 |
+
#
|
| 220 |
+
# return tool_calls
|
| 221 |
+
|
| 222 |
+
def parse_tool_calls(text: str) -> list:
|
| 223 |
+
"""
|
| 224 |
+
Parse tool calls from model output.
|
| 225 |
+
Supports both formats:
|
| 226 |
+
- [TOOL_CALL:tool_name(param1=value1, param2=value2)]
|
| 227 |
+
- <tool_call>{"name": "tool_name", "parameters": {"param1": "value1", "param2": "value2"}}</tool_call>
|
| 228 |
+
"""
|
| 229 |
+
tool_calls = []
|
| 230 |
+
|
| 231 |
+
# Pattern for both formats
|
| 232 |
+
pattern = r'(\[TOOL_CALL:(\w+)\((.*?)\)\]|<tool_call>\s*{"name":\s*"(\w+)",\s*"parameters":\s*{([^}]*)}\s*}\s*</tool_call>)'
|
| 233 |
+
matches = re.findall(pattern, text)
|
| 234 |
+
print("Raw matches:", matches)
|
| 235 |
+
|
| 236 |
+
for match in matches:
|
| 237 |
+
full_match, old_tool_name, old_params, json_tool_name, json_params = match
|
| 238 |
+
|
| 239 |
+
# Determine which format was matched
|
| 240 |
+
if old_tool_name: # Old format: [TOOL_CALL:tool_name(params)]
|
| 241 |
+
tool_name = old_tool_name
|
| 242 |
+
params_str = old_params
|
| 243 |
+
original_call = f"[TOOL_CALL:{tool_name}({params_str})]"
|
| 244 |
+
|
| 245 |
+
try:
|
| 246 |
+
params = {}
|
| 247 |
+
if params_str.strip():
|
| 248 |
+
param_pairs = params_str.split(',')
|
| 249 |
+
for pair in param_pairs:
|
| 250 |
+
if '=' in pair:
|
| 251 |
+
key, value = pair.split('=', 1)
|
| 252 |
+
key = key.strip()
|
| 253 |
+
value = value.strip().strip('"\'') # Remove quotes
|
| 254 |
+
params[key] = value
|
| 255 |
+
|
| 256 |
+
tool_calls.append({
|
| 257 |
+
"tool_name": tool_name,
|
| 258 |
+
"parameters": params,
|
| 259 |
+
"original_call": original_call
|
| 260 |
+
})
|
| 261 |
+
|
| 262 |
+
except Exception as e:
|
| 263 |
+
print(f"Error parsing old format tool call '{tool_name}({params_str})': {e}")
|
| 264 |
+
continue
|
| 265 |
+
|
| 266 |
+
elif json_tool_name: # JSON format: <tool_call>...</tool_call>
|
| 267 |
+
tool_name = json_tool_name
|
| 268 |
+
params_str = json_params
|
| 269 |
+
original_call = full_match
|
| 270 |
+
|
| 271 |
+
try:
|
| 272 |
+
params = {}
|
| 273 |
+
if params_str.strip():
|
| 274 |
+
# Parse JSON-like parameters
|
| 275 |
+
# Handle the format: "operation": "add", "num1": "125", "num2": "675"
|
| 276 |
+
param_pairs = params_str.split(',')
|
| 277 |
+
for pair in param_pairs:
|
| 278 |
+
if ':' in pair:
|
| 279 |
+
key, value = pair.split(':', 1)
|
| 280 |
+
key = key.strip().strip('"\'') # Remove quotes and whitespace
|
| 281 |
+
value = value.strip().strip('"\'') # Remove quotes and whitespace
|
| 282 |
+
params[key] = value
|
| 283 |
+
|
| 284 |
+
tool_calls.append({
|
| 285 |
+
"tool_name": tool_name,
|
| 286 |
+
"parameters": params,
|
| 287 |
+
"original_call": original_call
|
| 288 |
+
})
|
| 289 |
+
|
| 290 |
+
except Exception as e:
|
| 291 |
+
print(f"Error parsing JSON format tool call '{tool_name}': {e}")
|
| 292 |
+
continue
|
| 293 |
+
|
| 294 |
+
return tool_calls
|
| 295 |
+
|
| 296 |
+
def process_tool_calls(text: str) -> str:
|
| 297 |
+
"""Process tool calls in the generated text and replace with results"""
|
| 298 |
+
tool_calls = parse_tool_calls(text)
|
| 299 |
+
|
| 300 |
+
if not tool_calls:
|
| 301 |
+
return text
|
| 302 |
+
|
| 303 |
+
processed_text = text
|
| 304 |
+
|
| 305 |
+
for tool_call in tool_calls:
|
| 306 |
+
tool_name = tool_call["tool_name"]
|
| 307 |
+
parameters = tool_call["parameters"]
|
| 308 |
+
original_call = tool_call["original_call"]
|
| 309 |
+
|
| 310 |
+
try:
|
| 311 |
+
# Validate parameters before execution
|
| 312 |
+
if not isinstance(parameters, dict):
|
| 313 |
+
raise ValueError(f"Invalid parameters for tool {tool_name}: {parameters}")
|
| 314 |
+
|
| 315 |
+
# Execute tool
|
| 316 |
+
result = execute_tool_call(tool_name, **parameters)
|
| 317 |
+
|
| 318 |
+
# Create replacement text
|
| 319 |
+
if "error" in result:
|
| 320 |
+
replacement = f"[TOOL_ERROR: {result['error']}]"
|
| 321 |
+
else:
|
| 322 |
+
if "result" in result["result"]:
|
| 323 |
+
replacement = f"[TOOL_RESULT: {result['result']['formatted']}]"
|
| 324 |
+
else:
|
| 325 |
+
replacement = f"[TOOL_RESULT: {result['result']}]"
|
| 326 |
+
|
| 327 |
+
# Replace tool call with result
|
| 328 |
+
processed_text = processed_text.replace(original_call, replacement)
|
| 329 |
+
|
| 330 |
+
except Exception as e:
|
| 331 |
+
print(f"Error processing tool call '{tool_name}': {e}")
|
| 332 |
+
replacement = f"[TOOL_ERROR: Failed to process tool call: {str(e)}]"
|
| 333 |
+
processed_text = processed_text.replace(original_call, replacement)
|
| 334 |
+
|
| 335 |
+
return processed_text
|
| 336 |
+
|
| 337 |
+
def monitor_memory():
|
| 338 |
+
if torch.cuda.is_available():
|
| 339 |
+
allocated = torch.cuda.memory_allocated() / 1e9
|
| 340 |
+
cached = torch.cuda.memory_reserved() / 1e9
|
| 341 |
+
print(f"GPU Memory - Allocated: {allocated:.2f}GB, Cached: {cached:.2f}GB")
|
| 342 |
+
|
| 343 |
+
def generate_response(system_prompt: str, user_input: str, config_name: str = "Middle-ground") -> str:
|
| 344 |
+
"""
|
| 345 |
+
Run inference with the given task (system prompt) and user input using the specified config.
|
| 346 |
+
"""
|
| 347 |
+
load_model()
|
| 348 |
+
|
| 349 |
+
config = INFERENCE_CONFIGS[config_name]
|
| 350 |
+
|
| 351 |
+
input_messages = [
|
| 352 |
+
{"role": "system", "content": system_prompt},
|
| 353 |
+
{"role": "user", "content": user_input}
|
| 354 |
+
]
|
| 355 |
+
|
| 356 |
+
prompt_text = tokenizer.apply_chat_template(
|
| 357 |
+
input_messages,
|
| 358 |
+
tokenize=False,
|
| 359 |
+
add_generation_prompt=True
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
input_length = len(tokenizer.encode(prompt_text))
|
| 363 |
+
context_length = min(input_length, 3584) # Leave room for generation
|
| 364 |
+
|
| 365 |
+
inputs = tokenizer(
|
| 366 |
+
prompt_text,
|
| 367 |
+
return_tensors="pt",
|
| 368 |
+
truncation=True,
|
| 369 |
+
max_length=context_length,
|
| 370 |
+
padding=False
|
| 371 |
+
).to(model.device)
|
| 372 |
+
|
| 373 |
+
actual_input_length = inputs['input_ids'].shape[1]
|
| 374 |
+
max_new_tokens = min(config["max_new_tokens_cap"], 4096 - actual_input_length - 10)
|
| 375 |
+
max_new_tokens = max(config["min_tokens"], max_new_tokens)
|
| 376 |
+
|
| 377 |
+
with torch.no_grad():
|
| 378 |
+
start_time = time.time()
|
| 379 |
+
outputs = model.generate(
|
| 380 |
+
**inputs,
|
| 381 |
+
do_sample=config["do_sample"],
|
| 382 |
+
temperature=config["temperature"],
|
| 383 |
+
top_p=config["top_p"],
|
| 384 |
+
use_cache=config["use_cache"],
|
| 385 |
+
max_new_tokens=max_new_tokens,
|
| 386 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 387 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 388 |
+
# Memory optimizations
|
| 389 |
+
output_attentions=False,
|
| 390 |
+
output_hidden_states=False,
|
| 391 |
+
return_dict_in_generate=False,
|
| 392 |
+
)
|
| 393 |
+
inference_time = time.time() - start_time
|
| 394 |
+
print(f"Inference time: {inference_time:.2f} seconds")
|
| 395 |
+
|
| 396 |
+
memory = model.get_memory_footprint() / 1e6
|
| 397 |
+
monitor_memory()
|
| 398 |
+
print(f"Memory footprint: {memory:,.1f} MB")
|
| 399 |
+
|
| 400 |
+
# Clean up
|
| 401 |
+
gc.collect()
|
| 402 |
+
|
| 403 |
+
full_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 404 |
+
if prompt_text in full_text:
|
| 405 |
+
response_start = full_text.find(prompt_text) + len(prompt_text)
|
| 406 |
+
generated_response = full_text[response_start:].strip()
|
| 407 |
+
else:
|
| 408 |
+
# More robust fallback: try to extract response after the last user message
|
| 409 |
+
generated_response = full_text.strip()
|
| 410 |
+
try:
|
| 411 |
+
# Look for common assistant/response indicators
|
| 412 |
+
response_indicators = ["Assistant:", "<|assistant|>", "[/INST]", "Response:"]
|
| 413 |
+
for indicator in response_indicators:
|
| 414 |
+
if indicator in full_text:
|
| 415 |
+
parts = full_text.split(indicator)
|
| 416 |
+
if len(parts) > 1:
|
| 417 |
+
generated_response = parts[-1].strip()
|
| 418 |
+
break
|
| 419 |
+
|
| 420 |
+
# If no indicator found, try to remove the input part
|
| 421 |
+
user_message = user_input
|
| 422 |
+
if user_message in full_text:
|
| 423 |
+
parts = full_text.split(user_message)
|
| 424 |
+
if len(parts) > 1:
|
| 425 |
+
generated_response = parts[-1].strip()
|
| 426 |
+
except Exception:
|
| 427 |
+
generated_response = full_text.strip()
|
| 428 |
+
|
| 429 |
+
# Process any tool calls in the generated response
|
| 430 |
+
generated_response = process_tool_calls(generated_response)
|
| 431 |
+
# print('Input tokens:', inputs.input_ids.numel())
|
| 432 |
+
#print('Output tokens:', outputs.input_ids.numel())
|
| 433 |
+
# print('Output tokens:', outputs['input_ids'].numel())
|
| 434 |
+
return generated_response
|
requirements.txt
ADDED
|
Binary file (3.03 kB). View file
|
|
|