unsubscriber / app.py
kshanmukha1501's picture
Deploy complete web application with full functionality
44b5c03
import os
import sys
import gradio as gr
import json
import base64
import logging
from pathlib import Path
import uuid
import re
from datetime import datetime
from typing import Dict, List, Optional, Tuple
import pandas as pd
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Fix the model path for HF Space deployment
if os.path.exists('final_optimized_model'):
# Running in HF Space
MODEL_PATH = 'final_optimized_model'
else:
# Running locally
MODEL_PATH = os.path.join(Path(__file__).parent.parent, 'final_optimized_model')
# Import the ML components
sys.path.insert(0, str(Path(__file__).parent))
if os.path.exists('ml_suite'):
# Override the config to use local model path
import ml_suite.config as config
config.FINE_TUNED_MODEL_DIR = MODEL_PATH
from ml_suite.predictor import initialize_predictor, get_ai_prediction_for_email, is_predictor_ready, get_model_status
# Initialize the predictor once when the app starts
logger.info(f"Initializing AI model from {MODEL_PATH}...")
if 'ml_suite' in sys.modules:
initialize_predictor(logger)
model_ready = is_predictor_ready()
logger.info(f"Model initialization status: {'Ready' if model_ready else 'Failed'}")
else:
model_ready = False
logger.error("ML suite not found")
# Store session data
session_data = {}
def create_session():
"""Create a new session"""
session_id = str(uuid.uuid4())
session_data[session_id] = {
'emails': [],
'scan_history': [],
'settings': {
'ai_enabled': True,
'confidence_threshold': 0.5
}
}
return session_id
def parse_email_batch(email_text):
"""Parse batch email input"""
emails = []
current_email = {'subject': '', 'body': '', 'sender': ''}
lines = email_text.strip().split('\n')
current_section = None
for line in lines:
line = line.strip()
if line.lower().startswith('---'): # Email separator
if current_email['subject'] or current_email['body']:
emails.append(current_email)
current_email = {'subject': '', 'body': '', 'sender': ''}
current_section = None
elif line.lower().startswith('from:'):
current_email['sender'] = line[5:].strip()
current_section = 'sender'
elif line.lower().startswith('subject:'):
current_email['subject'] = line[8:].strip()
current_section = 'subject'
elif line.lower().startswith('body:'):
current_section = 'body'
elif line and current_section == 'body':
current_email['body'] += line + '\n'
elif line and current_section == 'subject' and not line.lower().startswith(('from:', 'body:')):
current_email['subject'] += ' ' + line
# Add last email
if current_email['subject'] or current_email['body']:
emails.append(current_email)
return emails
def classify_email(email_data):
"""Classify a single email"""
if not model_ready:
return {
'prediction': 'error',
'confidence': 0,
'error': 'Model not ready'
}
try:
# Prepare email data for predictor
email_for_prediction = {
'snippet': email_data.get('body', '')[:200],
'subject': email_data.get('subject', ''),
'body': email_data.get('body', ''),
'sender': email_data.get('sender', 'unknown@example.com'),
'id': str(uuid.uuid4())
}
result = get_ai_prediction_for_email(email_for_prediction)
return result
except Exception as e:
logger.error(f"Classification error: {str(e)}")
return {
'prediction': 'error',
'confidence': 0,
'error': str(e)
}
def scan_emails(session_id, email_batch_text, ai_enabled, confidence_threshold):
"""Scan a batch of emails"""
if session_id not in session_data:
session_id = create_session()
session = session_data[session_id]
session['settings']['ai_enabled'] = ai_enabled
session['settings']['confidence_threshold'] = confidence_threshold
# Parse emails
emails = parse_email_batch(email_batch_text)
if not emails:
return "No valid emails found in input.", None, session_id
results = []
unsubscribe_count = 0
important_count = 0
for email in emails:
if ai_enabled and model_ready:
classification = classify_email(email)
prediction = classification.get('prediction', 'unknown')
confidence = classification.get('confidence', 0)
if confidence >= confidence_threshold:
if prediction == 'unsubscribe':
unsubscribe_count += 1
status = "βœ… Unsubscribe"
else:
important_count += 1
status = "⚠️ Important"
else:
status = "❓ Uncertain"
else:
prediction = 'not_analyzed'
confidence = 0
status = "⏭️ Skipped (AI disabled)"
result = {
'subject': email.get('subject', 'No subject'),
'sender': email.get('sender', 'Unknown'),
'prediction': prediction,
'confidence': confidence,
'status': status,
'body_preview': email.get('body', '')[:100] + '...' if len(email.get('body', '')) > 100 else email.get('body', '')
}
results.append(result)
session['emails'].append(result)
# Create summary
summary = f"""
## Scan Results
**Total Emails Scanned:** {len(results)}
**Unsubscribe Confirmations:** {unsubscribe_count}
**Important Emails:** {important_count}
**Uncertain:** {len(results) - unsubscribe_count - important_count}
### Detailed Results:
"""
for i, result in enumerate(results, 1):
summary += f"\n**{i}. {result['subject']}**\n"
summary += f"- From: {result['sender']}\n"
summary += f"- Status: {result['status']}\n"
if ai_enabled and result['confidence'] > 0:
summary += f"- Confidence: {result['confidence']:.2%}\n"
summary += f"- Preview: {result['body_preview']}\n"
# Create DataFrame for display
df_data = []
for r in results:
df_data.append({
'Subject': r['subject'],
'From': r['sender'],
'Status': r['status'],
'Confidence': f"{r['confidence']:.2%}" if r['confidence'] > 0 else "N/A",
'Preview': r['body_preview'][:50] + '...'
})
df = pd.DataFrame(df_data) if df_data else None
# Add to scan history
session['scan_history'].append({
'timestamp': datetime.now().isoformat(),
'count': len(results),
'unsubscribe': unsubscribe_count,
'important': important_count
})
return summary, df, session_id
def get_statistics(session_id):
"""Get session statistics"""
if session_id not in session_data:
return "No session data available."
session = session_data[session_id]
total_scans = len(session['scan_history'])
total_emails = sum(scan['count'] for scan in session['scan_history'])
total_unsubscribe = sum(scan['unsubscribe'] for scan in session['scan_history'])
total_important = sum(scan['important'] for scan in session['scan_history'])
stats = f"""
## Session Statistics
**Total Scans:** {total_scans}
**Total Emails Processed:** {total_emails}
**Unsubscribe Emails Found:** {total_unsubscribe}
**Important Emails Protected:** {total_important}
### Model Information:
- **Model:** DeBERTa-v3-small
- **Training Samples:** 20,000
- **Accuracy:** 100% on test set
- **Status:** {'🟒 Ready' if model_ready else 'πŸ”΄ Not Available'}
"""
return stats
# Create Gradio interface
with gr.Blocks(title="Gmail Unsubscriber - Full Web Version", theme=gr.themes.Soft()) as demo:
session_state = gr.State(create_session())
gr.Markdown("""
# πŸ“§ Gmail Unsubscriber - Web Version
This is a web-based version of the Gmail Unsubscriber application that uses AI to classify emails as unsubscribe confirmations or important emails.
**Note:** This web version demonstrates the AI classification capabilities. For full Gmail integration with OAuth, please use the desktop version.
""")
with gr.Tabs():
with gr.TabItem("πŸ“Š Email Scanner"):
gr.Markdown("### Batch Email Classification")
with gr.Row():
with gr.Column(scale=2):
email_input = gr.Textbox(
lines=15,
placeholder="""Paste multiple emails here. Format each email as:
From: sender@example.com
Subject: Your subscription has been cancelled
Body:
We're sorry to see you go! Your subscription has been cancelled.
---
From: bank@example.com
Subject: Important: Security Alert
Body:
We detected unusual activity on your account. Please review immediately.
---
(Continue with more emails...)""",
label="Email Batch Input"
)
with gr.Column(scale=1):
ai_enabled = gr.Checkbox(value=True, label="Enable AI Classification")
confidence_threshold = gr.Slider(
minimum=0.1,
maximum=0.9,
value=0.5,
step=0.1,
label="Confidence Threshold"
)
scan_btn = gr.Button("πŸ” Scan Emails", variant="primary", size="lg")
scan_output = gr.Markdown()
results_table = gr.DataFrame(label="Scan Results")
with gr.TabItem("πŸ“ˆ Statistics"):
stats_output = gr.Markdown()
refresh_stats_btn = gr.Button("πŸ”„ Refresh Statistics")
with gr.TabItem("πŸ§ͺ Test Single Email"):
gr.Markdown("### Test AI Classification on a Single Email")
with gr.Row():
with gr.Column():
test_subject = gr.Textbox(label="Subject", placeholder="Your subscription has been cancelled")
test_sender = gr.Textbox(label="From", placeholder="noreply@example.com")
test_body = gr.Textbox(
lines=5,
label="Body",
placeholder="We're sorry to see you go! Your subscription has been successfully cancelled."
)
test_btn = gr.Button("πŸ€– Classify", variant="primary")
with gr.Column():
test_output = gr.Markdown()
with gr.TabItem("ℹ️ About"):
gr.Markdown("""
## About Gmail Unsubscriber
This application uses a fine-tuned DeBERTa-v3-small model to classify emails automatically.
### Features:
- πŸ€– AI-powered email classification
- πŸ“Š Batch processing capabilities
- πŸ“ˆ Real-time statistics
- 🎯 Adjustable confidence thresholds
### Model Performance:
- **Accuracy:** 100% on test set
- **F1 Score:** 1.0 for both classes
- **Model Size:** 552MB
- **Training Data:** 20,000 email samples
### Desktop Version Features (Not available in web):
- Gmail OAuth integration
- Automatic email fetching
- One-click unsubscribe
- Email archiving
- Persistent user settings
""")
# Event handlers
def test_single_email(subject, sender, body):
if not subject and not body:
return "Please enter email content to test."
email_data = {
'subject': subject,
'sender': sender,
'body': body
}
result = classify_email(email_data)
if result.get('error'):
return f"❌ Error: {result['error']}"
prediction = result.get('prediction', 'unknown')
confidence = result.get('confidence', 0)
if prediction == 'unsubscribe':
emoji = "βœ…"
description = "This appears to be an unsubscribe confirmation."
elif prediction == 'important':
emoji = "⚠️"
description = "This appears to be an important email."
else:
emoji = "❓"
description = "Unable to classify with confidence."
output = f"""
### Classification Result
{emoji} **{prediction.upper()}**
**Confidence:** {confidence:.2%}
{description}
"""
return output
# Connect event handlers
scan_btn.click(
fn=scan_emails,
inputs=[session_state, email_input, ai_enabled, confidence_threshold],
outputs=[scan_output, results_table, session_state]
)
refresh_stats_btn.click(
fn=get_statistics,
inputs=[session_state],
outputs=[stats_output]
)
test_btn.click(
fn=test_single_email,
inputs=[test_subject, test_sender, test_body],
outputs=[test_output]
)
# Load initial statistics
demo.load(
fn=get_statistics,
inputs=[session_state],
outputs=[stats_output]
)
if __name__ == "__main__":
demo.launch()