|
import urllib.request |
|
import fitz |
|
import re |
|
import numpy as np |
|
import tensorflow_hub as hub |
|
import openai |
|
import gradio as gr |
|
import os |
|
from sklearn.neighbors import NearestNeighbors |
|
|
|
api_key = os.environ['API_TOKEN'] |
|
|
|
def download_pdf(url, output_path): |
|
urllib.request.urlretrieve(url, output_path) |
|
|
|
|
|
def preprocess(text): |
|
text = text.replace('\n', ' ') |
|
text = re.sub('\s+', ' ', text) |
|
return text |
|
|
|
|
|
def pdf_to_text(path, start_page=1, end_page=None): |
|
doc = fitz.open(path) |
|
total_pages = doc.page_count |
|
|
|
if end_page is None: |
|
end_page = total_pages |
|
|
|
text_list = [] |
|
|
|
for i in range(start_page-1, end_page): |
|
text = doc.load_page(i).get_text("text") |
|
text = preprocess(text) |
|
text_list.append(text) |
|
|
|
doc.close() |
|
return text_list |
|
|
|
|
|
def text_to_chunks(texts, word_length=150, start_page=1): |
|
text_toks = [t.split(' ') for t in texts] |
|
page_nums = [] |
|
chunks = [] |
|
|
|
for idx, words in enumerate(text_toks): |
|
for i in range(0, len(words), word_length): |
|
chunk = words[i:i+word_length] |
|
if (i+word_length) > len(words) and (len(chunk) < word_length) and ( |
|
len(text_toks) != (idx+1)): |
|
text_toks[idx+1] = chunk + text_toks[idx+1] |
|
continue |
|
chunk = ' '.join(chunk).strip() |
|
chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"' |
|
chunks.append(chunk) |
|
return chunks |
|
|
|
|
|
class SemanticSearch: |
|
|
|
def __init__(self): |
|
self.use = hub.load('https://tfhub.dev/google/universal-sentence-encoder/4') |
|
self.fitted = False |
|
|
|
|
|
def fit(self, data, batch=1000, n_neighbors=5): |
|
self.data = data |
|
self.embeddings = self.get_text_embedding(data, batch=batch) |
|
n_neighbors = min(n_neighbors, len(self.embeddings)) |
|
self.nn = NearestNeighbors(n_neighbors=n_neighbors) |
|
self.nn.fit(self.embeddings) |
|
self.fitted = True |
|
|
|
|
|
def __call__(self, text, return_data=True): |
|
inp_emb = self.use([text]) |
|
neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0] |
|
|
|
if return_data: |
|
return [self.data[i] for i in neighbors] |
|
else: |
|
return neighbors |
|
|
|
|
|
def get_text_embedding(self, texts, batch=1000): |
|
embeddings = [] |
|
for i in range(0, len(texts), batch): |
|
text_batch = texts[i:(i+batch)] |
|
emb_batch = self.use(text_batch) |
|
embeddings.append(emb_batch) |
|
embeddings = np.vstack(embeddings) |
|
return embeddings |
|
|
|
|
|
|
|
def load_recommender(path, start_page=1): |
|
global recommender |
|
texts = pdf_to_text(path, start_page=start_page) |
|
chunks = text_to_chunks(texts, start_page=start_page) |
|
recommender.fit(chunks) |
|
return 'Corpus Loaded.' |
|
|
|
def generate_text(openAI_key,prompt, engine="text-davinci-003"): |
|
openai.api_key = openAI_key |
|
completions = openai.Completion.create( |
|
engine=engine, |
|
prompt=prompt, |
|
max_tokens=512, |
|
n=1, |
|
stop=None, |
|
temperature=0.7, |
|
) |
|
message = completions.choices[0].text |
|
return message |
|
|
|
def generate_answer(question,openAI_key): |
|
topn_chunks = recommender(question) |
|
prompt = "" |
|
prompt += 'search results:\n\n' |
|
for c in topn_chunks: |
|
prompt += c + '\n\n' |
|
|
|
prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\ |
|
"Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\ |
|
"Citation should be done at the end of each sentence. If the search results mention multiple subjects "\ |
|
"with the same name, create separate answers for each. Only include information found in the results and "\ |
|
"don't add any additional information. Make sure the answer is correct and don't output false content. "\ |
|
"If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\ |
|
"search results which has nothing to do with the question. Only answer what is asked. The "\ |
|
"answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: " |
|
|
|
prompt += f"Query: {question}\nAnswer:" |
|
answer = generate_text(api_key, prompt,"text-davinci-003") |
|
return answer |
|
|
|
|
|
def question_answer(url, file, question): |
|
|
|
|
|
if url.strip() == '' and file == None: |
|
return '[ERROR]: URL 和 PDF 都是空的。至少提供一个。' |
|
|
|
if url.strip() != '' and file != None: |
|
return '[ERROR]: 提供了 URL 和 PDF。请仅提供一个(网址或 PDF)。' |
|
|
|
if url.strip() != '': |
|
glob_url = url |
|
download_pdf(glob_url, 'corpus.pdf') |
|
load_recommender('corpus.pdf') |
|
|
|
else: |
|
old_file_name = file.name |
|
file_name = file.name |
|
file_name = file_name[:-12] + file_name[-4:] |
|
os.rename(old_file_name, file_name) |
|
load_recommender(file_name) |
|
|
|
if question.strip() == '': |
|
return '[ERROR]: 问题字段为空' |
|
|
|
return generate_answer(question,api_key) |
|
|
|
|
|
recommender = SemanticSearch() |
|
|
|
css = """ |
|
.gradio-container { |
|
background-image: linear-gradient(#d7d7d7, #f2f2f2); |
|
padding: 0; |
|
|
|
} |
|
.app.svelte-p7tiy3.svelte-p7tiy3 { |
|
padding: 10; |
|
} |
|
.padded.svelte-faijhx { |
|
padding: 30px 0 30px 0; |
|
background-color: transparent; |
|
} |
|
#markdown-or{ |
|
background-color: transparent; |
|
} |
|
|
|
:root,.gradio-container-3-20-1 :host { |
|
--color-border-primary:transparent; |
|
} |
|
|
|
#submit_button{ |
|
background-color: #fff; |
|
font-weight: bold; |
|
box-shadow: 5px 10px 18px #fff; |
|
} |
|
|
|
footer { |
|
visibility: hidden; |
|
} |
|
""" |
|
|
|
title = 'AI Pdf 归纳器' |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
|
|
|
|
|
|
with gr.Row(css=css): |
|
|
|
with gr.Group(css=css): |
|
|
|
|
|
url = gr.Textbox(label='在此处输入 PDF 网址') |
|
gr.Markdown("<center>或</center>", elem_id="markdown-or") |
|
file = gr.File(label='在此处上传您的 PDF/研究论文/书籍', file_types=['.pdf']) |
|
question = gr.Textbox(label='在这里输入您的问题', elem_id="question") |
|
btn = gr.Button(value='提交', elem_id="submit_button") |
|
btn.style(full_width=True) |
|
|
|
answer = gr.Textbox(label='你的提问的答案是:', elem_id="answer") |
|
|
|
btn.click(question_answer, inputs=[url, file, question], outputs=[answer]) |
|
demo.launch() |
|
|
|
|