|
import streamlit as st |
|
import pandas as pd |
|
import plotly.express as px |
|
from datetime import datetime, date |
|
from transformers import pipeline |
|
|
|
|
|
classifier = pipeline("zero-shot-classification") |
|
|
|
|
|
st.title("Personal Finance Analysis") |
|
|
|
|
|
st.subheader("Enter Transaction Details:") |
|
date_input = st.date_input("Date") |
|
amount = st.number_input("Amount", min_value=0.0) |
|
category = st.selectbox("Category", ["Groceries", "Rent", "Entertainment", "Utilities", "Other"]) |
|
description = st.text_input("Description (Optional)") |
|
|
|
|
|
if "monthly_limit" not in st.session_state: |
|
st.session_state.monthly_limit = 0.0 |
|
monthly_limit = st.number_input("Set Monthly Spending Limit", min_value=0.0, value=st.session_state.monthly_limit) |
|
st.session_state.monthly_limit = monthly_limit |
|
|
|
|
|
if st.button("Add Transaction"): |
|
transaction = {"category": category, "date": str(date_input), "amount": amount, "description": description} |
|
if "transactions" not in st.session_state: |
|
st.session_state.transactions = [] |
|
st.session_state.transactions.append(transaction) |
|
st.success("Transaction added successfully!") |
|
|
|
|
|
if "transactions" in st.session_state and st.session_state.transactions: |
|
st.subheader("Transaction History:") |
|
df = pd.DataFrame(st.session_state.transactions) |
|
st.dataframe(df) |
|
|
|
|
|
st.subheader("Data Analysis:") |
|
|
|
|
|
df['date'] = pd.to_datetime(df['date']) |
|
df['month'] = df['date'].dt.to_period('M') |
|
|
|
|
|
category_spending = df.groupby("category")["amount"].sum().reset_index() |
|
fig1 = px.pie(category_spending, values="amount", names="category", title="Spending by Category") |
|
st.plotly_chart(fig1) |
|
|
|
|
|
daily_spending = df.groupby("date")["amount"].sum().reset_index() |
|
fig2 = px.line(daily_spending, x="date", y="amount", title="Spending Over Time") |
|
st.plotly_chart(fig2) |
|
|
|
|
|
fig3 = px.bar(category_spending, x="category", y="amount", title="Spending by Category (Bar)") |
|
st.plotly_chart(fig3) |
|
|
|
|
|
average_spending = df.groupby('category')['amount'].mean().reset_index() |
|
fig4 = px.bar(average_spending, x='category', y='amount', title='Average Spending per Category') |
|
st.plotly_chart(fig4) |
|
|
|
|
|
current_month = pd.Timestamp.now().to_period('M') |
|
monthly_spent = df[df['month'] == current_month]['amount'].sum() |
|
|
|
st.subheader("Monthly Spending Summary") |
|
st.write(f"Current Month: {current_month}") |
|
st.write(f"Total Spent This Month: {monthly_spent:.2f}") |
|
st.write(f"Monthly Limit: {monthly_limit:.2f}") |
|
|
|
if monthly_limit > 0: |
|
percentage_spent = (monthly_spent / monthly_limit) * 100 |
|
st.write(f"Percentage of Limit Used: {percentage_spent:.2f}%") |
|
|
|
if monthly_spent > monthly_limit: |
|
st.warning(f"You have exceeded your monthly spending limit! ({monthly_spent:.2f} / {monthly_limit:.2f})") |
|
elif percentage_spent > 80: |
|
st.info("You are approaching your monthly spending limit.") |
|
|
|
|
|
if description: |
|
candidate_labels = ["positive", "negative", "neutral"] |
|
classified = classifier(description, candidate_labels) |
|
st.write("Sentiment Analysis of Description:", classified) |