Spaces:
Runtime error
Runtime error
Upload StableDiffusionInpaintingPipelineCustom.py
Browse files
StableDiffusionInpaintingPipelineCustom.py
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
import PIL
|
8 |
+
from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, PNDMScheduler, UNet2DConditionModel
|
9 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
10 |
+
from tqdm.auto import tqdm
|
11 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
12 |
+
|
13 |
+
|
14 |
+
def preprocess_image(image):
|
15 |
+
w, h = image.size
|
16 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
17 |
+
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
18 |
+
image = np.array(image).astype(np.float32) / 255.0
|
19 |
+
image = image[None].transpose(0, 3, 1, 2)
|
20 |
+
image = torch.from_numpy(image)
|
21 |
+
return 2.0 * image - 1.0
|
22 |
+
|
23 |
+
def preprocess_mask(mask):
|
24 |
+
mask=mask.convert("L")
|
25 |
+
w, h = mask.size
|
26 |
+
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
27 |
+
mask = mask.resize((w//8, h//8), resample=PIL.Image.NEAREST)
|
28 |
+
mask = np.array(mask).astype(np.float32) / 255.0
|
29 |
+
mask = np.tile(mask,(4,1,1))
|
30 |
+
mask = mask[None].transpose(0, 1, 2, 3)#what does this step do?
|
31 |
+
mask = 1 - mask #repaint white, keep black
|
32 |
+
mask = torch.from_numpy(mask)
|
33 |
+
return mask
|
34 |
+
|
35 |
+
|
36 |
+
class StableDiffusionInpaintingPipeline(DiffusionPipeline):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
vae: AutoencoderKL,
|
40 |
+
text_encoder: CLIPTextModel,
|
41 |
+
tokenizer: CLIPTokenizer,
|
42 |
+
unet: UNet2DConditionModel,
|
43 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler],
|
44 |
+
safety_checker: StableDiffusionSafetyChecker,
|
45 |
+
feature_extractor: CLIPFeatureExtractor,
|
46 |
+
):
|
47 |
+
super().__init__()
|
48 |
+
scheduler = scheduler.set_format("pt")
|
49 |
+
self.register_modules(
|
50 |
+
vae=vae,
|
51 |
+
text_encoder=text_encoder,
|
52 |
+
tokenizer=tokenizer,
|
53 |
+
unet=unet,
|
54 |
+
scheduler=scheduler,
|
55 |
+
safety_checker=safety_checker,
|
56 |
+
feature_extractor=feature_extractor,
|
57 |
+
)
|
58 |
+
|
59 |
+
@torch.no_grad()
|
60 |
+
def __call__(
|
61 |
+
self,
|
62 |
+
prompt: Union[str, List[str]],
|
63 |
+
init_image: torch.FloatTensor,
|
64 |
+
mask_image: torch.FloatTensor,
|
65 |
+
strength: float = 0.8,
|
66 |
+
num_inference_steps: Optional[int] = 50,
|
67 |
+
guidance_scale: Optional[float] = 7.5,
|
68 |
+
eta: Optional[float] = 0.0,
|
69 |
+
generator: Optional[torch.Generator] = None,
|
70 |
+
output_type: Optional[str] = "pil",
|
71 |
+
):
|
72 |
+
|
73 |
+
if isinstance(prompt, str):
|
74 |
+
batch_size = 1
|
75 |
+
elif isinstance(prompt, list):
|
76 |
+
batch_size = len(prompt)
|
77 |
+
else:
|
78 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
79 |
+
|
80 |
+
if strength < 0 or strength > 1:
|
81 |
+
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
|
82 |
+
|
83 |
+
# set timesteps
|
84 |
+
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
|
85 |
+
extra_set_kwargs = {}
|
86 |
+
offset = 0
|
87 |
+
if accepts_offset:
|
88 |
+
offset = 1
|
89 |
+
extra_set_kwargs["offset"] = 1
|
90 |
+
|
91 |
+
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
92 |
+
|
93 |
+
#preprocess image
|
94 |
+
init_image = preprocess_image(init_image).to(self.device)
|
95 |
+
|
96 |
+
# encode the init image into latents and scale the latents
|
97 |
+
init_latents = self.vae.encode(init_image).sample()
|
98 |
+
init_latents = 0.18215 * init_latents
|
99 |
+
|
100 |
+
# prepare init_latents noise to latents
|
101 |
+
init_latents = torch.cat([init_latents] * batch_size)
|
102 |
+
init_latents_orig = init_latents
|
103 |
+
|
104 |
+
# preprocess mask
|
105 |
+
mask = preprocess_mask(mask_image).to(self.device)
|
106 |
+
mask = torch.cat([mask] * batch_size)
|
107 |
+
|
108 |
+
#check sizes
|
109 |
+
if not mask.shape == init_latents.shape:
|
110 |
+
raise ValueError(f"The mask and init_image should be the same size!")
|
111 |
+
|
112 |
+
|
113 |
+
# get the original timestep using init_timestep
|
114 |
+
init_timestep = int(num_inference_steps * strength) + offset
|
115 |
+
init_timestep = min(init_timestep, num_inference_steps)
|
116 |
+
timesteps = self.scheduler.timesteps[-init_timestep]
|
117 |
+
timesteps = torch.tensor([timesteps] * batch_size, dtype=torch.long, device=self.device)
|
118 |
+
|
119 |
+
# add noise to latents using the timesteps
|
120 |
+
noise = torch.randn(init_latents.shape, generator=generator, device=self.device)
|
121 |
+
init_latents = self.scheduler.add_noise(init_latents, noise, timesteps)
|
122 |
+
|
123 |
+
# get prompt text embeddings
|
124 |
+
text_input = self.tokenizer(
|
125 |
+
prompt,
|
126 |
+
padding="max_length",
|
127 |
+
max_length=self.tokenizer.model_max_length,
|
128 |
+
truncation=True,
|
129 |
+
return_tensors="pt",
|
130 |
+
)
|
131 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
132 |
+
|
133 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
134 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
135 |
+
# corresponds to doing no classifier free guidance.
|
136 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
137 |
+
# get unconditional embeddings for classifier free guidance
|
138 |
+
if do_classifier_free_guidance:
|
139 |
+
max_length = text_input.input_ids.shape[-1]
|
140 |
+
uncond_input = self.tokenizer(
|
141 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
142 |
+
)
|
143 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
144 |
+
|
145 |
+
# For classifier free guidance, we need to do two forward passes.
|
146 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
147 |
+
# to avoid doing two forward passes
|
148 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
149 |
+
|
150 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
151 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
152 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
153 |
+
# and should be between [0, 1]
|
154 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
155 |
+
extra_step_kwargs = {}
|
156 |
+
if accepts_eta:
|
157 |
+
extra_step_kwargs["eta"] = eta
|
158 |
+
|
159 |
+
latents = init_latents
|
160 |
+
t_start = max(num_inference_steps - init_timestep + offset, 0)
|
161 |
+
for i, t in tqdm(enumerate(self.scheduler.timesteps[t_start:])):
|
162 |
+
# expand the latents if we are doing classifier free guidance
|
163 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
164 |
+
|
165 |
+
# predict the noise residual
|
166 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
|
167 |
+
|
168 |
+
# perform guidance
|
169 |
+
if do_classifier_free_guidance:
|
170 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
171 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
172 |
+
|
173 |
+
# compute the previous noisy sample x_t -> x_t-1
|
174 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)["prev_sample"]
|
175 |
+
|
176 |
+
#masking
|
177 |
+
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, t)
|
178 |
+
latents = ( init_latents_proper * mask ) + ( latents * (1-mask) )
|
179 |
+
|
180 |
+
# scale and decode the image latents with vae
|
181 |
+
latents = 1 / 0.18215 * latents
|
182 |
+
image = self.vae.decode(latents)
|
183 |
+
|
184 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
185 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
186 |
+
|
187 |
+
# run safety checker
|
188 |
+
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
|
189 |
+
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
|
190 |
+
|
191 |
+
if output_type == "pil":
|
192 |
+
image = self.numpy_to_pil(image)
|
193 |
+
|
194 |
+
return {"sample": image, "nsfw_content_detected": has_nsfw_concept}
|