Spaces:
Runtime error
Runtime error
import cv2 | |
import tempfile | |
import inspect | |
from typing import List, Optional, Union | |
import os | |
import numpy as np | |
import torch | |
import banana_dev as banana | |
import PIL | |
from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, PNDMScheduler, UNet2DConditionModel | |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | |
from tqdm.auto import tqdm | |
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer | |
import gradio as gr | |
import random | |
import base64 | |
from io import BytesIO | |
import os | |
import gdown | |
def download_gdrive_url(): | |
url = 'https://drive.google.com/u/0/uc?id=1PPO2MCttsmSqyB-vKh5C7SumwFKuhgyj&export=download' | |
output = 'haarcascade_frontalface_default.xml' | |
gdown.download(url, output, quiet=False) | |
def inpaint(p, init_image, mask_image=None, strength=0.75, guidance_scale=7.5, generator=None, num_samples=1, n_iter=1): | |
buffered_init_img = BytesIO() | |
buffered_inverted_img = BytesIO() | |
init_image.save(buffered_init_img,format="JPEG") | |
mask_image.save(buffered_inverted_img,format="JPEG") | |
encoded_init_image = base64.b64encode(buffered_init_img.getvalue()).decode('utf-8') | |
encoded_inverted_image = base64.b64encode(buffered_inverted_img.getvalue()).decode('utf-8') | |
model_inputs = { | |
"prompt": "4K UHD professional profile picture of a person wearing a suit for work and posing for a picture, fine details, realistic shaded.", | |
"init_image": encoded_init_image, | |
"mask_image": encoded_inverted_image, | |
"strength": 0.65, | |
"guidance_scale": 10, | |
"num_inference_steps": 100 | |
} | |
out = banana.run(os.environ.get("API_KEY"), os.environ.get("MODEL_KEY"), model_inputs) | |
image_byte_string = out["modelOutputs"][0]["output_image_base64"] | |
image_encoded = image_byte_string.encode('utf-8') | |
image_bytes = BytesIO(base64.b64decode(image_encoded)) | |
return_image = Image.open(image_bytes) | |
return return_image | |
def identify_face(user_image): | |
img = cv2.imread(user_image.name) # read the resized image in cv2 | |
print(img.shape) | |
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # convert to grayscale | |
download_gdrive_url() #download the haarcascade face recognition stuff | |
haar_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') | |
faces_rect = haar_cascade.detectMultiScale(gray_img, scaleFactor=1.1, minNeighbors=9) | |
for (x, y, w, h) in faces_rect[:1]: | |
mask = np.zeros(img.shape[:2], dtype="uint8") | |
print(mask.shape) | |
cv2.rectangle(mask, (x, y), (x+w, y+h), 255, -1) | |
print(mask.shape) | |
inverted_image = cv2.bitwise_not(mask) | |
return inverted_image | |
def sample_images(init_image, mask_image): | |
p = "4K UHD professional profile picture of a person wearing a suit for work" | |
strength=0.65 | |
guidance_scale=10 | |
num_samples = 1 | |
n_iter = 1 | |
generator = torch.Generator(device="cuda").manual_seed(random.randint(0, 1000000)) # change the seed to get different results | |
all_images = inpaint(p, init_image, mask_image, strength=strength, guidance_scale=guidance_scale, generator=generator, num_samples=num_samples, n_iter=n_iter) | |
return all_images | |
def preprocess_image(image): | |
w, h = image.size | |
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 | |
image = image.resize((w, h), resample=PIL.Image.LANCZOS) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return 2.0 * image - 1.0 | |
def preprocess_mask(mask): | |
mask=mask.convert("L") | |
w, h = mask.size | |
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 | |
mask = mask.resize((w//8, h//8), resample=PIL.Image.NEAREST) | |
mask = np.array(mask).astype(np.float32) / 255.0 | |
mask = np.tile(mask,(4,1,1)) | |
mask = mask[None].transpose(0, 1, 2, 3)#what does this step do? | |
mask = 1 - mask #repaint white, keep black | |
mask = torch.from_numpy(mask) | |
return mask | |
# accept an image input | |
# trigger the set of functions to occur => identify face, generate mask, save the inverted face mask, sample for the inverted images | |
# output the sampled images | |
def main(user_image): | |
# accept the image as input | |
init_image = PIL.Image.open(user_image).convert("RGB") | |
# # resize the image to be (512, 512) | |
newsize = (512, 512) | |
init_image = init_image.resize(newsize) | |
init_image.save(user_image.name) # save the resized image | |
## identify the face + save the inverted mask | |
inverted_mask = identify_face(user_image) | |
fp = tempfile.NamedTemporaryFile(mode='wb', suffix=".png") | |
cv2.imwrite(fp.name, inverted_mask) # save the inverted image mask | |
pil_inverted_mask = PIL.Image.open(fp.name).convert("RGB") | |
print("type(init_image): ", type(init_image)) | |
print("type(pil_inverted_mask): ", type(pil_inverted_mask)) | |
# sample the new images | |
return sample_images(init_image, pil_inverted_mask) | |
demo = gr.Interface(main, gr.Image(type="file"), "image") | |
demo.launch(debug=True) |