Spaces:
Runtime error
Runtime error
from huggingface_hub import notebook_login | |
import cv2 | |
import tempfile | |
import inspect | |
from typing import List, Optional, Union | |
import os | |
import numpy as np | |
import torch | |
import PIL | |
from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, PNDMScheduler, UNet2DConditionModel | |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | |
from tqdm.auto import tqdm | |
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer | |
import gradio as gr | |
import random | |
device = "cuda" | |
model_path = "CompVis/stable-diffusion-v1-4" | |
class StableDiffusionInpaintingPipeline(DiffusionPipeline): | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: Union[DDIMScheduler, PNDMScheduler], | |
safety_checker: StableDiffusionSafetyChecker, | |
feature_extractor: CLIPFeatureExtractor, | |
): | |
super().__init__() | |
scheduler = scheduler.set_format("pt") | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
init_image: torch.FloatTensor, | |
mask_image: torch.FloatTensor, | |
strength: float = 0.8, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
eta: Optional[float] = 0.0, | |
generator: Optional[torch.Generator] = None, | |
output_type: Optional[str] = "pil", | |
): | |
if isinstance(prompt, str): | |
batch_size = 1 | |
elif isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if strength < 0 or strength > 1: | |
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") | |
# set timesteps | |
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) | |
extra_set_kwargs = {} | |
offset = 0 | |
if accepts_offset: | |
offset = 1 | |
extra_set_kwargs["offset"] = 1 | |
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) | |
#preprocess image | |
init_image = preprocess_image(init_image).to(self.device) | |
# encode the init image into latents and scale the latents | |
init_latents = self.vae.encode(init_image).sample() | |
init_latents = 0.18215 * init_latents | |
# prepare init_latents noise to latents | |
init_latents = torch.cat([init_latents] * batch_size) | |
init_latents_orig = init_latents | |
# preprocess mask | |
mask = preprocess_mask(mask_image).to(self.device) | |
mask = torch.cat([mask] * batch_size) | |
#check sizes | |
if not mask.shape == init_latents.shape: | |
raise ValueError(f"The mask and init_image should be the same size!") | |
# get the original timestep using init_timestep | |
init_timestep = int(num_inference_steps * strength) + offset | |
init_timestep = min(init_timestep, num_inference_steps) | |
timesteps = self.scheduler.timesteps[-init_timestep] | |
timesteps = torch.tensor([timesteps] * batch_size, dtype=torch.long, device=self.device) | |
# add noise to latents using the timesteps | |
noise = torch.randn(init_latents.shape, generator=generator, device=self.device) | |
init_latents = self.scheduler.add_noise(init_latents, noise, timesteps) | |
# get prompt text embeddings | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
latents = init_latents | |
t_start = max(num_inference_steps - init_timestep + offset, 0) | |
for i, t in tqdm(enumerate(self.scheduler.timesteps[t_start:])): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)["prev_sample"] | |
#masking | |
init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, t) | |
latents = ( init_latents_proper * mask ) + ( latents * (1-mask) ) | |
# scale and decode the image latents with vae | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents) | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
# run safety checker | |
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device) | |
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values) | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
return {"sample": image, "nsfw_content_detected": has_nsfw_concept} | |
pipe = StableDiffusionInpaintingPipeline.from_pretrained( | |
model_path, | |
revision="fp16", | |
torch_dtype=torch.float16, | |
use_auth_token=os.environ.get("access_token")).to(device) | |
import gdown | |
def download_gdrive_url(): | |
url = 'https://drive.google.com/u/0/uc?id=1PPO2MCttsmSqyB-vKh5C7SumwFKuhgyj&export=download' | |
output = 'haarcascade_frontalface_default.xml' | |
gdown.download(url, output, quiet=False) | |
from torch import autocast | |
def inpaint(p, init_image, mask_image=None, strength=0.75, guidance_scale=7.5, generator=None, num_samples=1, n_iter=1): | |
all_images = [] | |
for _ in range(n_iter): | |
with autocast("cuda"): | |
images = pipe( | |
prompt=[p] * num_samples, | |
init_image=init_image, | |
mask_image=mask_image, | |
strength=strength, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
num_inference_steps=75 | |
)["sample"] | |
all_images.extend(images) | |
print(len(all_images)) | |
return all_images[0] | |
def identify_face(user_image): | |
img = cv2.imread(user_image.name) # read the resized image in cv2 | |
print(img.shape) | |
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # convert to grayscale | |
download_gdrive_url() #download the haarcascade face recognition stuff | |
haar_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') | |
faces_rect = haar_cascade.detectMultiScale(gray_img, scaleFactor=1.1, minNeighbors=9) | |
for (x, y, w, h) in faces_rect[:1]: | |
mask = np.zeros(img.shape[:2], dtype="uint8") | |
print(mask.shape) | |
cv2.rectangle(mask, (x, y), (x+w, y+h), 255, -1) | |
print(mask.shape) | |
inverted_image = cv2.bitwise_not(mask) | |
return inverted_image | |
def sample_images(init_image, mask_image): | |
p = "4K UHD professional profile picture of a person wearing a suit for work" | |
strength=0.65 | |
guidance_scale=10 | |
num_samples = 1 | |
n_iter = 1 | |
generator = torch.Generator(device="cuda").manual_seed(random.randint(0, 1000000)) # change the seed to get different results | |
all_images = inpaint(p, init_image, mask_image, strength=strength, guidance_scale=guidance_scale, generator=generator, num_samples=num_samples, n_iter=n_iter) | |
return all_images | |
def preprocess_image(image): | |
w, h = image.size | |
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 | |
image = image.resize((w, h), resample=PIL.Image.LANCZOS) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
return 2.0 * image - 1.0 | |
def preprocess_mask(mask): | |
mask=mask.convert("L") | |
w, h = mask.size | |
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32 | |
mask = mask.resize((w//8, h//8), resample=PIL.Image.NEAREST) | |
mask = np.array(mask).astype(np.float32) / 255.0 | |
mask = np.tile(mask,(4,1,1)) | |
mask = mask[None].transpose(0, 1, 2, 3)#what does this step do? | |
mask = 1 - mask #repaint white, keep black | |
mask = torch.from_numpy(mask) | |
return mask | |
# accept an image input | |
# trigger the set of functions to occur => identify face, generate mask, save the inverted face mask, sample for the inverted images | |
# output the sampled images | |
def main(user_image): | |
# accept the image as input | |
init_image = PIL.Image.open(user_image).convert("RGB") | |
# # resize the image to be (512, 512) | |
newsize = (512, 512) | |
init_image = init_image.resize(newsize) | |
init_image.save(user_image.name) # save the resized image | |
## identify the face + save the inverted mask | |
inverted_mask = identify_face(user_image) | |
fp = tempfile.NamedTemporaryFile(mode='wb', suffix=".png") | |
cv2.imwrite(fp.name, inverted_mask) # save the inverted image mask | |
pil_inverted_mask = PIL.Image.open(fp.name).convert("RGB") | |
print("type(init_image): ", type(init_image)) | |
print("type(pil_inverted_mask): ", type(pil_inverted_mask)) | |
# sample the new images | |
return sample_images(init_image, pil_inverted_mask) | |
demo = gr.Interface(main, gr.Image(type="file"), "image") | |
demo.launch(debug=True) |