kronos25 commited on
Commit
c2a658a
1 Parent(s): 2e8d684

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -52
app.py CHANGED
@@ -1,63 +1,36 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
 
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import spacy
4
+ from transformers import GenerationConfig, T5Tokenizer, T5ForConditionalGeneration
5
+ import json
6
 
7
  """
8
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
9
  """
10
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
11
 
12
+ def predict(message, history):
13
+ model = T5ForConditionalGeneration.from_pretrained('kronos25/Temporal_Chatbot')
14
+ tokenizer = T5Tokenizer.from_pretrained('kronos25/Temporal_Chatbot')
15
+ input = message + '\n'
16
+ inputs = tokenizer(input, return_tensors="pt")
17
+ outputs = model.generate(**inputs,max_length=100)
18
+ model_result = tokenizer.decode(outputs[0], skip_special_tokens=True)
19
+ return model_result + '\n'
20
+
21
+ gr.ChatInterface(
22
+ predict,
23
+ chatbot=gr.Chatbot(height=300),
24
+ textbox=gr.Textbox(placeholder="Ask me anything.", container=False, scale=7),
25
+ title="Temporal Chatbot",
26
+ description="Ask Temporal Chatbot any question",
27
+ theme="soft",
28
+ examples=["Is the doctor available tomorrow?"],
29
+ cache_examples=True,
30
+ retry_btn=None,
31
+ undo_btn="Delete Previous",
32
+ clear_btn="Clear"
33
+ ).launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  if __name__ == "__main__":
36
  demo.launch()