Spaces:
Sleeping
Sleeping
Add kernel pca fitting and testing
Browse files
app.py
CHANGED
@@ -4,4 +4,39 @@ def greet(name):
|
|
4 |
return "Hello " + name + "!!"
|
5 |
|
6 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
return "Hello " + name + "!!"
|
5 |
|
6 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
+
iface.launch()
|
8 |
+
|
9 |
+
from sklearn.datasets import make_circles
|
10 |
+
from sklearn.model_selection import train_test_split
|
11 |
+
|
12 |
+
X, y = make_circles(n_samples=1_000, factor=0.3, noise=0.05, random_state=0)
|
13 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
|
14 |
+
|
15 |
+
from sklearn.decomposition import PCA, KernelPCA
|
16 |
+
|
17 |
+
pca = PCA(n_components=2)
|
18 |
+
kernel_pca = KernelPCA(
|
19 |
+
n_components=None, kernel="rbf", gamma=10, fit_inverse_transform=True, alpha=0.1
|
20 |
+
)
|
21 |
+
|
22 |
+
X_test_pca = pca.fit(X_train).transform(X_test)
|
23 |
+
X_test_kernel_pca = kernel_pca.fit(X_train).transform(X_test)
|
24 |
+
|
25 |
+
fig, (orig_data_ax, pca_proj_ax, kernel_pca_proj_ax) = plt.subplots(
|
26 |
+
ncols=3, figsize=(14, 4)
|
27 |
+
)
|
28 |
+
|
29 |
+
orig_data_ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test)
|
30 |
+
orig_data_ax.set_ylabel("Feature #1")
|
31 |
+
orig_data_ax.set_xlabel("Feature #0")
|
32 |
+
orig_data_ax.set_title("Testing data")
|
33 |
+
|
34 |
+
pca_proj_ax.scatter(X_test_pca[:, 0], X_test_pca[:, 1], c=y_test)
|
35 |
+
pca_proj_ax.set_ylabel("Principal component #1")
|
36 |
+
pca_proj_ax.set_xlabel("Principal component #0")
|
37 |
+
pca_proj_ax.set_title("Projection of testing data\n using PCA")
|
38 |
+
|
39 |
+
kernel_pca_proj_ax.scatter(X_test_kernel_pca[:, 0], X_test_kernel_pca[:, 1], c=y_test)
|
40 |
+
kernel_pca_proj_ax.set_ylabel("Principal component #1")
|
41 |
+
kernel_pca_proj_ax.set_xlabel("Principal component #0")
|
42 |
+
_ = kernel_pca_proj_ax.set_title("Projection of testing data\n using KernelPCA")
|