Spaces:
Sleeping
Sleeping
Update clip_slider_pipeline.py
Browse files- clip_slider_pipeline.py +11 -11
clip_slider_pipeline.py
CHANGED
@@ -48,9 +48,9 @@ class CLIPSlider:
|
|
48 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
49 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
50 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
51 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
52 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
53 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
54 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
55 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
56 |
positives.append(pos)
|
@@ -82,7 +82,7 @@ class CLIPSlider:
|
|
82 |
|
83 |
with torch.no_grad():
|
84 |
toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
|
85 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
86 |
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
87 |
|
88 |
if avg_diff_2nd and normalize_scales:
|
@@ -164,18 +164,18 @@ class CLIPSliderXL(CLIPSlider):
|
|
164 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
165 |
|
166 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
167 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids
|
168 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
169 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids
|
170 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
171 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
172 |
positives.append(pos)
|
173 |
negatives.append(neg)
|
174 |
|
175 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
176 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids
|
177 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
178 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids
|
179 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
180 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
181 |
positives2.append(pos2)
|
@@ -303,18 +303,18 @@ class CLIPSlider3(CLIPSlider):
|
|
303 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
304 |
|
305 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
306 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
307 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
308 |
-
max_length=self.pipe.tokenizer.model_max_length).input_ids.
|
309 |
pos = self.pipe.text_encoder(pos_toks).text_embeds
|
310 |
neg = self.pipe.text_encoder(neg_toks).text_embeds
|
311 |
positives.append(pos)
|
312 |
negatives.append(neg)
|
313 |
|
314 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
315 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
316 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
317 |
-
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.
|
318 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
319 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
320 |
positives2.append(pos2)
|
|
|
48 |
pos_prompt = f"a {medium} of a {target_word} {subject}"
|
49 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
50 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
51 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
52 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
53 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
54 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
55 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
56 |
positives.append(pos)
|
|
|
82 |
|
83 |
with torch.no_grad():
|
84 |
toks = self.pipe.tokenizer(prompt, return_tensors="pt", padding="max_length", truncation=True,
|
85 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
86 |
prompt_embeds = self.pipe.text_encoder(toks).last_hidden_state
|
87 |
|
88 |
if avg_diff_2nd and normalize_scales:
|
|
|
164 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
165 |
|
166 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
167 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
168 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
169 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
170 |
pos = self.pipe.text_encoder(pos_toks).pooler_output
|
171 |
neg = self.pipe.text_encoder(neg_toks).pooler_output
|
172 |
positives.append(pos)
|
173 |
negatives.append(neg)
|
174 |
|
175 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
176 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
177 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
178 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
179 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
180 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
181 |
positives2.append(pos2)
|
|
|
303 |
neg_prompt = f"a {medium} of a {opposite} {subject}"
|
304 |
|
305 |
pos_toks = self.pipe.tokenizer(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
306 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
307 |
neg_toks = self.pipe.tokenizer(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
308 |
+
max_length=self.pipe.tokenizer.model_max_length).input_ids.cuda()
|
309 |
pos = self.pipe.text_encoder(pos_toks).text_embeds
|
310 |
neg = self.pipe.text_encoder(neg_toks).text_embeds
|
311 |
positives.append(pos)
|
312 |
negatives.append(neg)
|
313 |
|
314 |
pos_toks2 = self.pipe.tokenizer_2(pos_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
315 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
316 |
neg_toks2 = self.pipe.tokenizer_2(neg_prompt, return_tensors="pt", padding="max_length", truncation=True,
|
317 |
+
max_length=self.pipe.tokenizer_2.model_max_length).input_ids.cuda()
|
318 |
pos2 = self.pipe.text_encoder_2(pos_toks2).text_embeds
|
319 |
neg2 = self.pipe.text_encoder_2(neg_toks2).text_embeds
|
320 |
positives2.append(pos2)
|