aiste-tiles / app.py
jonwiese
init
831d468
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
lora = "kratadata/aiste-tiles"
prefix = "Abstract glazed, tile pattern of "
suffix = ""
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
full_prompt = prefix + " " + prompt + " " + suffix
pipe.load_lora_weights(lora)
image = pipe(
prompt = full_prompt,
width = width,
height = height,
num_inference_steps = num_inference_steps,
generator = generator,
guidance_scale=0.0
).images[0]
return image, seed
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Image Prompt",
show_label = "True",
info="Your image prompt",
max_lines=4,
placeholder="Enter your prompt",
container=True,
)
with gr.Accordion("Advanced Settings", open=False):
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
info = "Keep at 1024 for best results"
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
info = "Keep at 1024 for best results"
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=8,
step=1,
value=2,
info = "Increase to 4 for better results"
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True, info = "Keep true to generate a new image each time")
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
info = "Fix seed if you want to keep generating the same image"
)
run_button = gr.Button("Run", scale=0)
with gr.Column():
result = gr.Image(label="Result", show_label=False, format="jpeg")
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps],
outputs = [result, seed]
)
demo.launch()