|
|
|
import os |
|
import pickle |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
import torch |
|
from dataclasses import dataclass, asdict |
|
import json |
|
|
|
|
|
|
|
num_time_steps = 500 |
|
|
|
|
|
|
|
|
|
|
|
def get_dt(num_time_steps): |
|
return 2.0/num_time_steps |
|
|
|
dt = get_dt(num_time_steps) |
|
|
|
|
|
def exact_solution(Rnum,t): |
|
x = np.linspace(0.0,1.0,num=128) |
|
t0 = np.exp(Rnum/8.0) |
|
return (x/(t+1))/(1.0+np.sqrt((t+1)/t0)*np.exp(Rnum*(x*x)/(4.0*t+4))) |
|
|
|
|
|
class ReDataset: |
|
def __init__(self, |
|
X: np.ndarray = None, |
|
X_tau: np.ndarray = None, |
|
t_values: np.ndarray = None, |
|
tau_values: np.ndarray = None, |
|
Re_values: np.ndarray = None): |
|
self.X = X |
|
self.X_tau = X_tau |
|
self.t_values = t_values |
|
self.tau_values = tau_values |
|
self.Re_values = Re_values |
|
|
|
def append(self, other): |
|
self.X = np.concatenate([self.X, other.X]) if self.X is not None else other.X |
|
self.X_tau = np.concatenate([self.X_tau, other.X_tau]) if self.X_tau is not None else other.X_tau |
|
self.t_values = np.concatenate([self.t_values, other.t_values]) if self.t_values is not None else other.t_values |
|
self.tau_values = np.concatenate([self.tau_values, other.tau_values]) if self.tau_values is not None else other.tau_values |
|
self.Re_values = np.concatenate([self.Re_values, other.Re_values]) if self.Re_values is not None else other.Re_values |
|
|
|
@dataclass |
|
class IntervalSplit: |
|
interpolation: tuple |
|
extrapolation_left: tuple |
|
extrapolation_right: tuple |
|
|
|
def get_time_shifts(snapshots, tau_range=(100, 500), n_samples=100): |
|
X = [] |
|
X_tau = [] |
|
tau_values = [] |
|
while len(X) < n_samples: |
|
tau = np.random.randint(*tau_range) |
|
i = np.random.randint(0, len(snapshots)-tau) |
|
X.append(snapshots[i]) |
|
X_tau.append(snapshots[i+tau]) |
|
tau_values.append(tau) |
|
X = np.array(X) |
|
X_tau = np.array(X_tau) |
|
tau_values = np.array(tau_values) |
|
return X, X_tau, tau_values |
|
|
|
def prepare_Re_dataset(Re_range=(100, 2000), tau_range=(500, 1900), dt=dt, n_samples=5000): |
|
X = [] |
|
X_tau = [] |
|
t_values = [] |
|
tau_values = [] |
|
Re_values = [] |
|
TRANGE = (0,2) |
|
while len(X) < n_samples: |
|
|
|
logRe = np.random.uniform(np.log(Re_range[0]), np.log(Re_range[1])) |
|
Re = np.exp(logRe).round().astype(int) |
|
t = np.random.uniform(*TRANGE) |
|
x_t = exact_solution(Re, t) |
|
|
|
tau = np.random.randint(*tau_range) |
|
x_tau = exact_solution(Re, t+(tau*dt)) |
|
|
|
X.append(x_t) |
|
X_tau.append(x_tau) |
|
t_values.append(t) |
|
tau_values.append(tau) |
|
Re_values.append(Re) |
|
|
|
X = np.array(X) |
|
X_tau = np.array(X_tau) |
|
t_values = np.array(t_values) |
|
tau_values = np.array(tau_values) |
|
Re_values = np.array(Re_values) |
|
|
|
dataset = ReDataset(X, X_tau, t_values, tau_values, Re_values) |
|
return dataset |
|
|
|
|
|
def train_test_split_range(interval, interpolation_span=0.1, extrapolation_left_span=0.1, extrapolation_right_span=0.1): |
|
""" |
|
Split the range into train and test ranges |
|
We have three test folds: |
|
1. Interpolation fold: Re and tau values are within the training (min, max) range but not in the training set |
|
We sample an interval of length x_interpolation_span% randomly from the total range |
|
2. Extrapolation fold: Re and tau values are outside the training (min, max) range |
|
We sample two intervals of length x_extrapolation_right_span% and x_extrapolation_left_span% from the total range |
|
3. Validation fold: Re and tau values are randomly sampled from the total set |
|
|
|
Overall interval looks like: |
|
Extrapolation_left_test | normal | Interpolation_test | normal | Extrapolation_right_test |
|
(min, extrapolation_left) | (extraplation_left, interpolation_min) | (interpolation_min, interpolation_max) | (interpolation_max, extrapolation_right) | (extrapolation_right, max) |
|
and |
|
train, val = split(normal, val_split) |
|
""" |
|
r_min, r_max = interval |
|
length = (r_max-r_min) |
|
extra_left_length = extrapolation_left_span * length |
|
extra_right_length = extrapolation_right_span * length |
|
inter_length = interpolation_span * length |
|
|
|
extrapolation_left = (r_min, r_min + extra_left_length) |
|
extrapolation_right = (r_max - extra_right_length, r_max) |
|
|
|
interpolation_min = np.random.uniform(extrapolation_left[1], extrapolation_right[0] - inter_length) |
|
interpolation = (interpolation_min, interpolation_min + inter_length) |
|
|
|
train_ranges = [(extrapolation_left[1], interpolation[0]), (interpolation[1], extrapolation_right[0])] |
|
return IntervalSplit(interpolation, extrapolation_left, extrapolation_right), train_ranges |
|
|
|
def get_train_ranges(interval_split): |
|
return [ |
|
(interval_split.extrapolation_left[1], interval_split.interpolation[0]), |
|
(interval_split.interpolation[1], interval_split.extrapolation_right[0]) |
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_train_val_test_folds(Re_range, tau_range, |
|
re_interpolation_span=0.10, |
|
re_extrapolation_left_span=0.1, |
|
re_extrapolation_right_span=0.10, |
|
tau_interpolation_span=0.10, |
|
tau_extrapolation_left_span=0.1, |
|
tau_extrapolation_right_span=0.10, |
|
n_samples_train=1000000, |
|
val_split=0.2): |
|
|
|
Re_interval_split, Re_train_ranges = train_test_split_range(Re_range, re_interpolation_span, re_extrapolation_left_span, re_extrapolation_right_span) |
|
tau_interval_split, tau_train_ranges = train_test_split_range(tau_range, tau_interpolation_span, tau_extrapolation_left_span, tau_extrapolation_right_span) |
|
|
|
|
|
|
|
|
|
dataset = ReDataset() |
|
for re_train_range, tau_train_range in zip(Re_train_ranges, tau_train_ranges): |
|
train_dataset = prepare_Re_dataset(Re_range=re_train_range, tau_range=tau_train_range, n_samples=n_samples_train) |
|
dataset.append(train_dataset) |
|
|
|
inds = np.arange(len(dataset.X)) |
|
np.random.shuffle(inds) |
|
train_inds = inds[:int(len(inds)*(1-val_split))] |
|
val_inds = inds[int(len(inds)*(1-val_split)):] |
|
dataset_train = ReDataset(dataset.X[train_inds], dataset.X_tau[train_inds], dataset.t_values[train_inds], dataset.tau_values[train_inds], dataset.Re_values[train_inds]) |
|
dataset_val = ReDataset(dataset.X[val_inds], dataset.X_tau[val_inds],dataset.t_values[val_inds], dataset.tau_values[val_inds], dataset.Re_values[val_inds]) |
|
return dataset_train, dataset_val, Re_interval_split, tau_interval_split |
|
|
|
def plot_sample(dataset, i): |
|
X = dataset.X |
|
X_tau = dataset.X_tau |
|
Tau = dataset.tau_values |
|
Re_total = dataset.Re_values |
|
plt.plot(X[i], label = "Initial State") |
|
plt.plot(X_tau[i], label = "Mapped State") |
|
plt.title(f'Tau: {Tau[i]}, Re: {Re_total[i]}') |
|
plt.legend() |
|
plt.show() |
|
|
|
def save_to_path(path, dataset_train, dataset_val, Re_interval_split, tau_interval_split): |
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
dataset_train_path = os.path.join(path, 'dataset_train.pkl') |
|
dataset_val_path = os.path.join(path, 'dataset_val.pkl') |
|
Re_interval_split_path = os.path.join(path, 'Re_interval_split.json') |
|
tau_interval_split_path = os.path.join(path, 'tau_interval_split.json') |
|
|
|
with open(dataset_train_path, 'wb') as f: |
|
pickle.dump(dataset_train, f) |
|
with open(dataset_val_path, 'wb') as f: |
|
pickle.dump(dataset_val, f) |
|
|
|
with open(Re_interval_split_path, 'w') as f: |
|
json.dump(asdict(Re_interval_split), f) |
|
with open(tau_interval_split_path, 'w') as f: |
|
json.dump(asdict(tau_interval_split), f) |
|
|
|
def load_from_path(path): |
|
dataset_train_path = os.path.join(path, 'dataset_train.pkl') |
|
dataset_val_path = os.path.join(path, 'dataset_val.pkl') |
|
Re_interval_split_path = os.path.join(path, 'Re_interval_split.json') |
|
tau_interval_split_path = os.path.join(path, 'tau_interval_split.json') |
|
|
|
with open(dataset_train_path, 'rb') as f: |
|
dataset_train = pickle.load(f) |
|
with open(dataset_val_path, 'rb') as f: |
|
dataset_val = pickle.load(f) |
|
with open(Re_interval_split_path, 'r') as f: |
|
Re_interval_split = json.load(f) |
|
Re_interval_split = IntervalSplit(**Re_interval_split) |
|
with open(tau_interval_split_path, 'r') as f: |
|
tau_interval_split = json.load(f) |
|
tau_interval_split = IntervalSplit(**tau_interval_split) |
|
|
|
return dataset_train, dataset_val, Re_interval_split, tau_interval_split |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
load_from_path('data') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|
|
|