fix
Browse files- .gitignore +1 -0
- README.md +6 -5
- app.py +110 -0
- packages.txt +1 -0
- requirements.txt +2 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.idea
|
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
-
title: Kotoba Whisper
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Kotoba Whisper Demo
|
3 |
+
emoji: π₯
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: blue
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from math import floor
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import spaces
|
6 |
+
import torch
|
7 |
+
import gradio as gr
|
8 |
+
from transformers import pipeline
|
9 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
10 |
+
|
11 |
+
|
12 |
+
# configuration
|
13 |
+
MODEL_NAME = "japanese-asr/distil-whisper-bilingual-v1.0"
|
14 |
+
BATCH_SIZE = 16
|
15 |
+
CHUNK_LENGTH_S = 15
|
16 |
+
# device setting
|
17 |
+
if torch.cuda.is_available():
|
18 |
+
torch_dtype = torch.bfloat16
|
19 |
+
device = "cuda"
|
20 |
+
model_kwargs = {'attn_implementation': 'sdpa'}
|
21 |
+
else:
|
22 |
+
torch_dtype = torch.float32
|
23 |
+
device = "cpu"
|
24 |
+
model_kwargs = {}
|
25 |
+
|
26 |
+
# define the pipeline
|
27 |
+
pipe = pipeline(
|
28 |
+
model=MODEL_NAME,
|
29 |
+
chunk_length_s=CHUNK_LENGTH_S,
|
30 |
+
batch_size=BATCH_SIZE,
|
31 |
+
torch_dtype=torch_dtype,
|
32 |
+
device=device,
|
33 |
+
model_kwargs=model_kwargs,
|
34 |
+
trust_remote_code=True
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
def format_time(start: Optional[float], end: Optional[float]):
|
39 |
+
|
40 |
+
def _format_time(seconds: Optional[float]):
|
41 |
+
if seconds is None:
|
42 |
+
return "complete "
|
43 |
+
minutes = floor(seconds / 60)
|
44 |
+
hours = floor(seconds / 3600)
|
45 |
+
seconds = seconds - hours * 3600 - minutes * 60
|
46 |
+
m_seconds = floor(round(seconds - floor(seconds), 3) * 10 ** 3)
|
47 |
+
seconds = floor(seconds)
|
48 |
+
return f'{hours:02}:{minutes:02}:{seconds:02}.{m_seconds:03}'
|
49 |
+
|
50 |
+
return f"[{_format_time(start)}-> {_format_time(end)}]:"
|
51 |
+
|
52 |
+
|
53 |
+
@spaces.GPU
|
54 |
+
def get_prediction(inputs, task: str, language: Optional[str]):
|
55 |
+
generate_kwargs = {"task": task}
|
56 |
+
if language:
|
57 |
+
generate_kwargs['language'] = language
|
58 |
+
prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs)
|
59 |
+
text = "".join([c['text'] for c in prediction['chunks']])
|
60 |
+
text_timestamped = "\n".join([
|
61 |
+
f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks']
|
62 |
+
])
|
63 |
+
return text, text_timestamped
|
64 |
+
|
65 |
+
|
66 |
+
def transcribe(inputs: str, task: str, language: str):
|
67 |
+
language = None if language == "none" else language
|
68 |
+
if inputs is None:
|
69 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
70 |
+
with open(inputs, "rb") as f:
|
71 |
+
inputs = f.read()
|
72 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
73 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
74 |
+
return get_prediction(inputs, task, language)
|
75 |
+
|
76 |
+
|
77 |
+
demo = gr.Blocks()
|
78 |
+
description = (f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper "
|
79 |
+
f"checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio"
|
80 |
+
f" files of arbitrary length.")
|
81 |
+
title = f"Transcribe Audio with {os.path.basename(MODEL_NAME)}"
|
82 |
+
mf_transcribe = gr.Interface(
|
83 |
+
fn=transcribe,
|
84 |
+
inputs=[
|
85 |
+
gr.Audio(sources="microphone", type="filepath"),
|
86 |
+
gr.Textbox(lines=1, placeholder="Prompt"),
|
87 |
+
gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
88 |
+
gr.Radio(["none", "ja", "en"], label="Language", default="none")
|
89 |
+
],
|
90 |
+
outputs=["text", "text"],
|
91 |
+
title=title,
|
92 |
+
description=description,
|
93 |
+
allow_flagging="never",
|
94 |
+
)
|
95 |
+
file_transcribe = gr.Interface(
|
96 |
+
fn=transcribe,
|
97 |
+
inputs=[
|
98 |
+
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
99 |
+
gr.Textbox(lines=1, placeholder="Prompt"),
|
100 |
+
gr.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
|
101 |
+
gr.Radio(["none", "ja", "en"], label="Language", default="none")
|
102 |
+
],
|
103 |
+
outputs=["text", "text"],
|
104 |
+
title=title,
|
105 |
+
description=description,
|
106 |
+
allow_flagging="never",
|
107 |
+
)
|
108 |
+
with demo:
|
109 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
|
110 |
+
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True)
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
torch
|