yuta0306
first commit
565faca
raw
history blame
No virus
22 kB
from typing import Optional, Tuple
import numpy as np
import torch
import tqdm
from torch.nn import functional as F
from IPython import embed
def top_p_sample(prob_dist: torch.Tensor, top_p: float):
sorted_probs, sorted_indices = torch.sort(prob_dist, descending=True, dim=-1)
cum_sum_probs = torch.cumsum(sorted_probs, dim=-1) # (b, vocab_size)
sorted_indices_to_remove = cum_sum_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = 0
sorted_indices_to_remove = sorted_indices_to_remove.bool()
# replace probs to be removed with 0 in the sorted_probs
sorted_probs[sorted_indices_to_remove] = 0
# reverse the sorting process
reversed_indices = torch.argsort(sorted_indices)
prob_dist = torch.gather(sorted_probs, -1, reversed_indices)
# normalize
prob_dist = prob_dist / prob_dist.sum(dim=-1, keepdim=True)
return prob_dist
class CausalInferenceMixin:
"""
Mixin class for performing inference in a causal language model.
This mixin provides methods for predicting the next token in a sequence, sampling from the model,
and applying token prediction masks.
Attributes:
None
Methods:
_sample_next_token: Predicts the next token in the sequence.
_create_token_pred_mask: Creates a token prediction mask based on sequence lengths.
_apply_token_pred_mask: Applies a token prediction mask to the next token predictions.
_sample_batch: Samples a batch of tokens from the model.
_sort_for_batching: Sorts the input sequences for efficient batching.
_causal_sample: Generates a sequence of tokens using causal sampling.
"""
@torch.no_grad()
def _sample_next_token(
self,
*,
idx: torch.Tensor,
speaker_embs: Optional[torch.Tensor],
temperature: float,
top_k: Optional[int],
top_p: Optional[float],
guidance_scale: Optional[float],
) -> torch.Tensor:
"""
Predict the next token in the sequence.
Args:
idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
temperature (float): Sampling temperature.
top_k (Optional[int]): Top-k filtering threshold. Set to `None` to disable top-k filtering.
top_p (Optional[float]): Nucleus sampling threshold. Set to `None` to disable it.
guidance_scale (Optional[float]): Scale factor for the guidance loss. Set to `None` to disable guidance.
Returns:
torch.Tensor: Next index in the sequence after sampling. Shape: (batch, num_hierarchies).
"""
if top_k is not None and top_p is not None:
raise ValueError("Only one of top_k and top_p can be set")
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(-1) <= self.config.block_size else idx[:, :, -self.config.block_size :]
# forward the model to get the logits for the index in the sequence
list_logits, _ = self(
idx_cond, speaker_embs=speaker_embs
) # list with len num_hierarchies of (b,1,vocab_size) tensors
# print(f'{list_logits[0].shape=}, {len(list_logits)=}')
# print(f'{list_logits[0][:,:,:10]}')
if guidance_scale is not None:
assert idx_cond.shape[0] % 2 == 0
assert list_logits[0].shape[0] % 2 == 0
for i, logits in enumerate(list_logits):
logits_cond, logits_uncond = logits.split(logits.shape[0] // 2, dim=0)
list_logits[i] = (guidance_scale) * logits_cond + (1 - guidance_scale) * logits_uncond
assert list_logits[0].shape[0] == idx_cond.shape[0] // 2
# pluck the logits at the final step and scale by desired temperature
list_logits = [
logits[:, -1, :] / temperature for logits in list_logits
] # list with len num_hierarchies of (b,vocab_size) tensors
# optionally crop the logits to only the top k options
if top_k is not None:
for i in range(len(list_logits)):
logits = list_logits[i]
v, _ = torch.topk(
logits, min(top_k, logits.size(-1))
) # returns a descending sorted list of values and indices of top_k values
logits[logits < v[:, [-1]]] = -float("Inf") # set all logits below the smallest top_k value to -Inf
list_logits[i] = logits
# apply softmax to convert logits to (normalized) probabilities
# embed()
probs = [
F.softmax(logits, dim=-1) for logits in list_logits
] # list of len num_hierarchies of (b,vocab_size) tensors
# print(f'{probs[0].shape=}')
# print(f'{probs[0][:,:,:10]}')
if top_p is not None:
for i in range(len(probs)):
probs[i] = top_p_sample(probs[i], top_p)
# sample from the distribution
idx_next = [
torch.multinomial(prob, num_samples=1) for prob in probs
] # list of len num_hierarchies of (b,1) tensors
idx_next = torch.cat(idx_next, dim=-1) # (b, num_hierarchies) tensor
return idx_next # (b, num_hierarchies) tensor
@torch.no_grad()
def _create_token_pred_mask(self, idx: torch.Tensor, seq_lens: list[int]) -> torch.Tensor:
"""
Creates a token prediction mask based on sequence lengths.
Args:
idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
seq_lens (list[int]): List of sequence lengths for each sequence in idx.
Returns:
torch.Tensor: Token prediction mask of shape (batch, time).
"""
token_pred_mask = torch.zeros((idx.shape[0], idx.shape[-1]), dtype=torch.bool, device=idx.device)
for i in range(len(seq_lens)):
token_pred_mask[i, : seq_lens[i]] = True
assert (token_pred_mask[:, : min(seq_lens)] == 1).all()
return token_pred_mask
@torch.no_grad()
def _apply_token_pred_mask(
self, *, idx_next: torch.Tensor, orig_input_at_t: torch.Tensor, token_pred_mask_at_t: torch.Tensor
) -> torch.Tensor:
"""
Applies a token prediction mask to the next token predictions.
Args:
idx_next (torch.Tensor): Next token predictions of shape (batch, num_hierarchies).
orig_input_at_t (torch.Tensor): Original input at time step t of shape (batch, num_hierarchies).
token_pred_mask_at_t (torch.Tensor): Token prediction mask at time step t of shape (batch, 1).
Returns:
torch.Tensor: Updated next token predictions after applying the token prediction mask.
"""
idx_next = idx_next * (~token_pred_mask_at_t) + orig_input_at_t * token_pred_mask_at_t
return idx_next
@torch.no_grad()
def _sample_batch(
self,
*,
idx: torch.Tensor,
max_new_tokens: int,
seq_lens: list[int],
temperature: float,
top_k: Optional[int],
top_p: Optional[float],
speaker_embs: Optional[torch.Tensor],
guidance_scale: Optional[float],
):
"""
Samples a batch of tokens from the model.
Args:
idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
max_new_tokens (int): Maximum number of NEW tokens to generate (in addition to largest sequence in idx).
seq_lens (list[int]): List of sequence lengths for each sequence in idx.
temperature (float): Sampling temperature.
top_k (Optional[int]): Top-k filtering threshold. Set to `None` to disable top-k filtering.
top_p (Optional[float]): Nucleus sampling threshold. Set to `None` to disable it.
speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
guidance_scale (Optional[float]): Scale factor for the guidance loss. Set to `None` to disable guidance.
Returns:
torch.Tensor: Generated sequence indices of shape (batch, num_hierarchies, time).
"""
assert max(seq_lens) <= idx.shape[-1]
token_pred_mask = self._create_token_pred_mask(idx, seq_lens)
input = torch.clone(idx)
min_seq_lens = min(seq_lens)
idx = idx[:, :, :min_seq_lens]
if guidance_scale is not None:
if speaker_embs is None:
raise Exception("Guidance is only supported for conditional models")
# create speaker embeddings equivalent to the batch size, filling with None
# for second half to do unconditional generation.
speaker_embs = list(speaker_embs) + [None] * (speaker_embs.shape[0])
for timestep in tqdm.tqdm(range(min_seq_lens, min_seq_lens + max_new_tokens), desc="tokens: "):
if (self.kv_cache_enabled is True) and (timestep > min_seq_lens):
idx_input = idx[:, :, -1:]
else:
idx_input = idx
if guidance_scale is not None:
# TODO: fix: will cause a problem with kv-caching as it's not expecting larger batch-size.
if timestep == min_seq_lens:
print("[hack!!!!] Guidance is on, so we're doubling batch size!")
# replicate idx in the batch dimension
idx_input = (
idx_input.unsqueeze(0).repeat(2, 1, 1, 1).reshape(-1, idx_input.shape[1], idx_input.shape[2])
)
# sanity checks
assert idx_input.shape[0] % 2 == 0
idx_next = self._sample_next_token(
idx=idx_input,
speaker_embs=speaker_embs,
temperature=temperature,
top_k=top_k,
top_p=top_p,
guidance_scale=guidance_scale,
) # (b, num_hierarchies)
assert idx_next.shape[0] == idx.shape[0]
if timestep < token_pred_mask.shape[-1]:
idx_next = self._apply_token_pred_mask(
idx_next=idx_next,
orig_input_at_t=input[:, :, timestep],
token_pred_mask_at_t=token_pred_mask[:, [timestep]],
)
idx_next = idx_next.unsqueeze(-1) # (b, num_hierarchies, T=1) tensor
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next), dim=2)
return idx
@torch.no_grad()
def _sort_for_batching(
self,
*,
idx: torch.Tensor,
seq_lens: list[int],
speaker_embs: Optional[torch.Tensor],
batch_size: int,
max_new_tokens: int,
) -> Tuple[list[int], list[int], torch.Tensor, list[int], Optional[torch.Tensor], int]:
"""
Sorts the input sequences for efficient batching.
Args:
idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
seq_lens (list[int]): List of sequence lengths for each sequence in idx.
speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
batch_size (int): Batch size for sampling. idx is split into batches of this size for sampling.
max_new_tokens (int): Maximum number of NEW tokens to generate (in addition to largest sequence in idx).
Returns:
Tuple[list[int], list[int], torch.Tensor, list[int], Optional[torch.Tensor], int]:
- sorted_indices (list[int]): List of indices of the input sequences that transform it into sorted order.
- invert_sorted_indices (list[int]): List of indices to invert the sorted sequences back to the original order.
- idx (torch.Tensor): Input sequence indices in sorted order.
- seq_lens (list[int]): Sequence lengths in sorted order.
- speaker_embs (Optional[torch.Tensor]): speaker embeddings in sorted order.
- max_token_len (int): Effective maximum number of tokens to generate.
"""
assert len(seq_lens) == idx.shape[0]
assert max(seq_lens) <= idx.shape[-1]
sorted_indices = np.argsort(seq_lens)
inverted_sorted_indices = np.zeros(len(seq_lens), dtype=np.int32)
inverted_sorted_indices[sorted_indices] = np.arange(len(seq_lens), dtype=np.int32)
idx = idx[sorted_indices]
seq_lens = [seq_lens[i] for i in sorted_indices]
speaker_embs = speaker_embs[sorted_indices] if speaker_embs is not None else None
max_token_len = 0
# figure out effective max_tokens to generate
for start_index in range(0, len(seq_lens), batch_size):
end_index = min(start_index + batch_size, len(seq_lens))
batch_seq_lens = seq_lens[start_index:end_index]
# random heuristic...
# # TODO: fix!
max_token_len = max(max_token_len, min(batch_seq_lens) + max_new_tokens)
return sorted_indices, inverted_sorted_indices, idx, seq_lens, speaker_embs, max_token_len
@torch.no_grad()
def _causal_sample(
self,
*,
idx: torch.Tensor,
max_new_tokens: int,
seq_lens: list[int],
temperature: float,
top_k: Optional[int],
top_p: Optional[float],
speaker_embs: Optional[torch.Tensor],
batch_size: int,
guidance_scale: Optional[float] = None,
) -> torch.Tensor:
"""
Generates a sequence of tokens using causal sampling.
Args:
idx (torch.Tensor): Initial sequence indices of shape (batch, num_hierarchies, time).
max_new_tokens (int): Maximum number of NEW tokens to generate (in addition to largest sequence in idx).
seq_lens (list[int]): List of sequence lengths for each sequence in idx.
temperature (float): Sampling temperature.
top_k (Optional[int]): Top-k filtering threshold. Set to `None` to disable top-k filtering.
top_p (Optional[float]): Nucleus sampling threshold. Set to `None` to disable it.
speaker_embs (Optional[torch.Tensor]): Speaker embeddings. Set to `None` if using an unconditional model.
batch_size (int): Batch size for sampling. idx is split into batches of this size for sampling.
guidance_scale (Optional[float]): Scale factor for the guidance loss. Set to `None` to disable guidance.
Returns:
torch.Tensor: Generated sequence indices of shape (batch, num_hierarchies, time).
"""
(
_,
invert_sorted_indices,
idx,
seq_lens,
speaker_embs,
max_token_len,
) = self._sort_for_batching(
idx=idx, seq_lens=seq_lens, speaker_embs=speaker_embs, batch_size=batch_size, max_new_tokens=max_new_tokens
)
return_idx = torch.zeros((len(seq_lens), idx.size(1), max_token_len), dtype=torch.long, device=idx.device)
for start_index in tqdm.tqdm(range(0, len(seq_lens), batch_size), desc="batch: "):
end_index = min(start_index + batch_size, len(seq_lens))
kv_batch_size = end_index - start_index
if guidance_scale is not None:
kv_batch_size = 2 * kv_batch_size
if self.kv_cache_enabled:
print("!!!! USING KV-CACHING ASSUMED TORCH.BFLOAT16")
self.empty_kv_cache(
batch_size=kv_batch_size,
kv_cache_maxlen=self.config.block_size,
dtype=torch.bfloat16,
)
batch_seq_lens = seq_lens[start_index:end_index]
batch_max_new_tokens = max_token_len - min(batch_seq_lens)
batch_idx = idx[start_index:end_index]
batch_speaker_embs = speaker_embs[start_index:end_index] if speaker_embs is not None else None
batch_idx = self._sample_batch(
idx=batch_idx,
max_new_tokens=batch_max_new_tokens,
seq_lens=batch_seq_lens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
speaker_embs=batch_speaker_embs,
guidance_scale=guidance_scale,
)
return_idx[start_index:end_index] = batch_idx
return return_idx[invert_sorted_indices]
def empty_kv_cache(self, *, batch_size: int, kv_cache_maxlen: int, dtype: torch.dtype):
"""
Empties key-value (KV) cache for causal attention.
Args:
batch_size (int): The batch size.
kv_cache_maxlen (int): The maximum length of the KV cache.
dtype (torch.dtype): The data type of the KV cache.
Raises:
Exception: If KV cache is enabled for non-causal attention.
"""
if self.kv_cache_enabled is False:
raise Exception("KV cache is not enabled")
if self.config.causal is False:
raise Exception("KV cache is not supported for non-causal attention")
self.kv_pos = 0
for block in self.transformer.h:
block.attn.empty_kv_cache(batch_size=batch_size, kv_cache_maxlen=kv_cache_maxlen, dtype=dtype)
def enable_kv_cache(self):
"""
Enables key-value (KV) cache for causal attention.
Raises:
Exception: If KV cache is enabled for non-causal attention.
"""
if self.config.causal is False:
raise Exception("KV cache is not supported for non-causal attention")
self.kv_cache_enabled = True
for block in self.transformer.h:
block.attn.kv_cache_enabled = True
def disable_kv_cache(self):
"""
Disables the key-value cache for the transformer and all its blocks.
"""
self.kv_cache_enabled = False
for block in self.transformer.h:
block.attn.kv_cache_enabled = False
block.attn.kv_cache = None
block.attn.kv_cache_first_empty_index = 0
@torch.no_grad()
def _slow_causal_sampling_loop(
self,
idx: torch.Tensor,
max_new_tokens: int,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
speaker_embs: Optional[torch.Tensor] = None,
guidance_scale: Optional[float] = None,
):
"""
Old non-batched version of causal sampling. Kept for testing / reference.
Take a conditioning sequence of indices idx (LongTensor of shape (b,n_head,t)) and complete
the sequence max_new_tokens times, feeding the predictions back into the model each time.
Most likely you'll want to make sure to be in model.eval() mode of operation for this.
"""
assert idx.dim() == 3, "idx must be a batch of sequences of hierarchical tokens"
assert idx.size(0) == 1, "can only do one sequence at a time for now"
assert top_p is None, "nucleus sampling not supported yet with _slow_causal_sampling_loop"
if self.config.causal is not True:
raise Exception("Causal sampling is only supported for causal models")
if self.kv_cache_enabled:
print("!!!! USING KV-CACHING ASSUMED TORCH.BFLOAT16")
self.empty_kv_cache(
batch_size=1,
kv_cache_maxlen=self.config.block_size,
dtype=torch.bfloat16,
)
for i in range(max_new_tokens):
# if the sequence context is growing too long we must crop it at block_size
idx_cond = idx if idx.size(-1) <= self.config.block_size else idx[:, -self.config.block_size :]
if self.kv_cache_enabled:
if i > 0:
idx_cond = idx_cond[:, :, -1:]
# forward the model to get the logits for the index in the sequence
list_logits, _ = self(idx_cond, speaker_embs=speaker_embs)
if guidance_scale is not None:
# we've already checked that kv-caching is not switched on
# so this should be ok.
list_logits_uncond, _ = self(idx_cond, speaker_embs=None)
list_logits = [
(guidance_scale) * logits + (1 - guidance_scale) * logits_uncond
for logits, logits_uncond in zip(list_logits, list_logits_uncond)
]
# pluck the logits at the final step and scale by desired temperature
list_logits = [logits[:, -1, :] / temperature for logits in list_logits]
# optionally crop the logits to only the top k options
if top_k is not None:
for i in range(len(list_logits)):
logits = list_logits[i]
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float("Inf")
list_logits[i] = logits
# apply softmax to convert logits to (normalized) probabilities
probs = [F.softmax(logits, dim=-1) for logits in list_logits]
# sample from the distribution
idx_next = torch.tensor(
[torch.multinomial(prob, num_samples=1) for prob in probs], device=idx.device
) # (c, 1)
# append sampled index to the running sequence and continue
idx = torch.cat((idx, idx_next.unsqueeze(0).unsqueeze(-1)), dim=2)
return idx