Spaces:
Running
on
Zero
Running
on
Zero
add stability ts
Browse files- app.py +120 -17
- requirements.txt +2 -1
app.py
CHANGED
@@ -2,14 +2,16 @@ import os
|
|
2 |
import time
|
3 |
import tempfile
|
4 |
from math import floor
|
5 |
-
from typing import Optional
|
6 |
|
7 |
import torch
|
8 |
import gradio as gr
|
9 |
import yt_dlp as youtube_dl
|
|
|
10 |
from transformers import pipeline
|
11 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
12 |
from punctuators.models import PunctCapSegModelONNX
|
|
|
13 |
|
14 |
|
15 |
# configuration
|
@@ -18,7 +20,6 @@ BATCH_SIZE = 16
|
|
18 |
CHUNK_LENGTH_S = 15
|
19 |
FILE_LIMIT_MB = 1000
|
20 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
21 |
-
PUNCTUATOR = PunctCapSegModelONNX.from_pretrained("pcs_47lang")
|
22 |
|
23 |
|
24 |
# device setting
|
@@ -43,6 +44,104 @@ pipe = pipeline(
|
|
43 |
)
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def format_time(start: Optional[float], end: Optional[float]):
|
47 |
|
48 |
def _format_time(seconds: Optional[float]):
|
@@ -58,19 +157,18 @@ def format_time(start: Optional[float], end: Optional[float]):
|
|
58 |
return f"[{_format_time(start)}-> {_format_time(end)}]:"
|
59 |
|
60 |
|
61 |
-
def get_prediction(inputs, prompt: Optional[str], punctuate_text: bool = True):
|
62 |
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
63 |
if prompt:
|
64 |
generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
|
65 |
prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs)
|
|
|
|
|
|
|
|
|
|
|
66 |
if punctuate_text:
|
67 |
-
|
68 |
-
prediction['chunks'] = [
|
69 |
-
{
|
70 |
-
'timestamp': c['timestamp'],
|
71 |
-
'text': "".join(e) if 'unk' not in "".join(e).lower() else c['text']
|
72 |
-
} for c, e in zip(prediction['chunks'], text_edit)
|
73 |
-
]
|
74 |
text = "".join([c['text'] for c in prediction['chunks']])
|
75 |
text_timestamped = "\n".join([
|
76 |
f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks']
|
@@ -78,10 +176,12 @@ def get_prediction(inputs, prompt: Optional[str], punctuate_text: bool = True):
|
|
78 |
return text, text_timestamped
|
79 |
|
80 |
|
81 |
-
def transcribe(inputs, prompt, punctuate_text
|
82 |
if inputs is None:
|
83 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
84 |
-
|
|
|
|
|
85 |
|
86 |
|
87 |
def _return_yt_html_embed(yt_url):
|
@@ -115,7 +215,7 @@ def download_yt_audio(yt_url, filename):
|
|
115 |
raise gr.Error(str(err))
|
116 |
|
117 |
|
118 |
-
def yt_transcribe(yt_url, prompt, punctuate_text: bool = True):
|
119 |
html_embed_str = _return_yt_html_embed(yt_url)
|
120 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
121 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
@@ -124,7 +224,7 @@ def yt_transcribe(yt_url, prompt, punctuate_text: bool = True):
|
|
124 |
inputs = f.read()
|
125 |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
126 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
127 |
-
text, text_timestamped = get_prediction(inputs, prompt, punctuate_text)
|
128 |
return html_embed_str, text, text_timestamped
|
129 |
|
130 |
|
@@ -134,7 +234,8 @@ mf_transcribe = gr.Interface(
|
|
134 |
inputs=[
|
135 |
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
136 |
gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True),
|
137 |
-
gr.inputs.Checkbox(default=True, label="Add punctuations")
|
|
|
138 |
],
|
139 |
outputs=["text", "text"],
|
140 |
layout="horizontal",
|
@@ -149,7 +250,8 @@ file_transcribe = gr.Interface(
|
|
149 |
inputs=[
|
150 |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
|
151 |
gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True),
|
152 |
-
gr.inputs.Checkbox(default=True, label="Add punctuations")
|
|
|
153 |
],
|
154 |
outputs=["text", "text"],
|
155 |
layout="horizontal",
|
@@ -163,7 +265,8 @@ yt_transcribe = gr.Interface(
|
|
163 |
inputs=[
|
164 |
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
165 |
gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True),
|
166 |
-
gr.inputs.Checkbox(default=True, label="Add punctuations")
|
|
|
167 |
],
|
168 |
outputs=["html", "text", "text"],
|
169 |
layout="horizontal",
|
|
|
2 |
import time
|
3 |
import tempfile
|
4 |
from math import floor
|
5 |
+
from typing import Optional, List, Dict, Any
|
6 |
|
7 |
import torch
|
8 |
import gradio as gr
|
9 |
import yt_dlp as youtube_dl
|
10 |
+
import numpy as np
|
11 |
from transformers import pipeline
|
12 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
13 |
from punctuators.models import PunctCapSegModelONNX
|
14 |
+
from stable_whisper import WhisperResult
|
15 |
|
16 |
|
17 |
# configuration
|
|
|
20 |
CHUNK_LENGTH_S = 15
|
21 |
FILE_LIMIT_MB = 1000
|
22 |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
|
|
23 |
|
24 |
|
25 |
# device setting
|
|
|
44 |
)
|
45 |
|
46 |
|
47 |
+
class Punctuator:
|
48 |
+
|
49 |
+
ja_punctuations = ["!", "?", "γ", "γ"]
|
50 |
+
|
51 |
+
def __init__(self, model: str = "pcs_47lang"):
|
52 |
+
self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model)
|
53 |
+
|
54 |
+
def punctuate(self, pipeline_chunk: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
55 |
+
|
56 |
+
def validate_punctuation(raw: str, punctuated: str):
|
57 |
+
if 'unk' in punctuated:
|
58 |
+
return raw
|
59 |
+
if punctuated.count("γ") > 1:
|
60 |
+
ind = punctuated.rfind("γ")
|
61 |
+
punctuated = punctuated.replace("γ", "")
|
62 |
+
punctuated = punctuated[:ind] + "γ" + punctuated[ind:]
|
63 |
+
return punctuated
|
64 |
+
|
65 |
+
text_edit = self.punctuation_model.infer([c['text'] for c in pipeline_chunk])
|
66 |
+
return [
|
67 |
+
{
|
68 |
+
'timestamp': c['timestamp'],
|
69 |
+
'text': validate_punctuation(c['text'], "".join(e))
|
70 |
+
} for c, e in zip(pipeline_chunk, text_edit)
|
71 |
+
]
|
72 |
+
|
73 |
+
|
74 |
+
PUNCTUATOR = Punctuator()
|
75 |
+
|
76 |
+
|
77 |
+
def _fix_timestamp(sample_rate: int, result: List[Dict[str, Any]], audio: np.ndarray) -> WhisperResult or None:
|
78 |
+
|
79 |
+
def replace_none_ts(parts):
|
80 |
+
total_dur = round(audio.shape[-1] / sample_rate, 3)
|
81 |
+
_medium_dur = _ts_nonzero_mask = None
|
82 |
+
|
83 |
+
def ts_nonzero_mask() -> np.ndarray:
|
84 |
+
nonlocal _ts_nonzero_mask
|
85 |
+
if _ts_nonzero_mask is None:
|
86 |
+
_ts_nonzero_mask = np.array([(p['end'] or p['start']) is not None for p in parts])
|
87 |
+
return _ts_nonzero_mask
|
88 |
+
|
89 |
+
def medium_dur() -> float:
|
90 |
+
nonlocal _medium_dur
|
91 |
+
if _medium_dur is None:
|
92 |
+
nonzero_dus = [p['end'] - p['start'] for p in parts if None not in (p['end'], p['start'])]
|
93 |
+
nonzero_durs = np.array(nonzero_dus)
|
94 |
+
_medium_dur = np.median(nonzero_durs) * 2 if len(nonzero_durs) else 2.0
|
95 |
+
return _medium_dur
|
96 |
+
|
97 |
+
def _curr_max_end(start: float, next_idx: float) -> float:
|
98 |
+
max_end = total_dur
|
99 |
+
if next_idx != len(parts):
|
100 |
+
mask = np.flatnonzero(ts_nonzero_mask()[next_idx:])
|
101 |
+
if len(mask):
|
102 |
+
_part = parts[mask[0]+next_idx]
|
103 |
+
max_end = _part['start'] or _part['end']
|
104 |
+
|
105 |
+
new_end = round(start + medium_dur(), 3)
|
106 |
+
if new_end > max_end:
|
107 |
+
return max_end
|
108 |
+
return new_end
|
109 |
+
|
110 |
+
for i, part in enumerate(parts, 1):
|
111 |
+
if part['start'] is None:
|
112 |
+
is_first = i == 1
|
113 |
+
if is_first:
|
114 |
+
new_start = round((part['end'] or 0) - medium_dur(), 3)
|
115 |
+
part['start'] = max(new_start, 0.0)
|
116 |
+
else:
|
117 |
+
part['start'] = parts[i - 2]['end']
|
118 |
+
if part['end'] is None:
|
119 |
+
no_next_start = i == len(parts) or parts[i]['start'] is None
|
120 |
+
part['end'] = _curr_max_end(part['start'], i) if no_next_start else parts[i]['start']
|
121 |
+
|
122 |
+
words = [dict(start=word['timestamp'][0], end=word['timestamp'][1], word=word['text']) for word in result]
|
123 |
+
replace_none_ts(words)
|
124 |
+
return WhisperResult([words], force_order=True, check_sorted=True)
|
125 |
+
|
126 |
+
|
127 |
+
def fix_timestamp(pipeline_output: List[Dict[str, Any]], audio: np.ndarray, sample_rate: int) -> List[Dict[str, Any]]:
|
128 |
+
result = _fix_timestamp(sample_rate=sample_rate, audio=audio, result=pipeline_output)
|
129 |
+
result.adjust_by_silence(
|
130 |
+
audio,
|
131 |
+
q_levels=20,
|
132 |
+
k_size=5,
|
133 |
+
sample_rate=sample_rate,
|
134 |
+
min_word_dur=None,
|
135 |
+
word_level=True,
|
136 |
+
verbose=True,
|
137 |
+
nonspeech_error=0.1,
|
138 |
+
use_word_position=True
|
139 |
+
)
|
140 |
+
if result.has_words:
|
141 |
+
result.regroup(True)
|
142 |
+
return [{"timestamp": [s.start, s.end], "text": s.text} for s in result.segments]
|
143 |
+
|
144 |
+
|
145 |
def format_time(start: Optional[float], end: Optional[float]):
|
146 |
|
147 |
def _format_time(seconds: Optional[float]):
|
|
|
157 |
return f"[{_format_time(start)}-> {_format_time(end)}]:"
|
158 |
|
159 |
|
160 |
+
def get_prediction(inputs, prompt: Optional[str], punctuate_text: bool = True, stabilize_timestamp: bool = True):
|
161 |
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
162 |
if prompt:
|
163 |
generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device)
|
164 |
prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs)
|
165 |
+
if stabilize_timestamp:
|
166 |
+
prediction['chunks'] = fix_timestamp(pipeline_output=prediction['chunks'],
|
167 |
+
audio=inputs["array"],
|
168 |
+
sample_rate=inputs["sampling_rate"]
|
169 |
+
)
|
170 |
if punctuate_text:
|
171 |
+
prediction['chunks'] = PUNCTUATOR.punctuate(prediction['chunks'])
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
text = "".join([c['text'] for c in prediction['chunks']])
|
173 |
text_timestamped = "\n".join([
|
174 |
f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks']
|
|
|
176 |
return text, text_timestamped
|
177 |
|
178 |
|
179 |
+
def transcribe(inputs, prompt, punctuate_text, stabilize_timestamp):
|
180 |
if inputs is None:
|
181 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
182 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
183 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
184 |
+
return get_prediction(inputs, prompt, punctuate_text, stabilize_timestamp)
|
185 |
|
186 |
|
187 |
def _return_yt_html_embed(yt_url):
|
|
|
215 |
raise gr.Error(str(err))
|
216 |
|
217 |
|
218 |
+
def yt_transcribe(yt_url, prompt, punctuate_text: bool = True, stabilize_timestamp: bool = True):
|
219 |
html_embed_str = _return_yt_html_embed(yt_url)
|
220 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
221 |
filepath = os.path.join(tmpdirname, "video.mp4")
|
|
|
224 |
inputs = f.read()
|
225 |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
226 |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
227 |
+
text, text_timestamped = get_prediction(inputs, prompt, punctuate_text, stabilize_timestamp)
|
228 |
return html_embed_str, text, text_timestamped
|
229 |
|
230 |
|
|
|
234 |
inputs=[
|
235 |
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
|
236 |
gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True),
|
237 |
+
gr.inputs.Checkbox(default=True, label="Add punctuations"),
|
238 |
+
gr.inputs.Checkbox(default=True, label="Stabilize timestamp")
|
239 |
],
|
240 |
outputs=["text", "text"],
|
241 |
layout="horizontal",
|
|
|
250 |
inputs=[
|
251 |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
|
252 |
gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True),
|
253 |
+
gr.inputs.Checkbox(default=True, label="Add punctuations"),
|
254 |
+
gr.inputs.Checkbox(default=True, label="Stabilize timestamp")
|
255 |
],
|
256 |
outputs=["text", "text"],
|
257 |
layout="horizontal",
|
|
|
265 |
inputs=[
|
266 |
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
267 |
gr.inputs.Textbox(lines=1, placeholder="Prompt", optional=True),
|
268 |
+
gr.inputs.Checkbox(default=True, label="Add punctuations"),
|
269 |
+
gr.inputs.Checkbox(default=True, label="Stabilize timestamp")
|
270 |
],
|
271 |
outputs=["html", "text", "text"],
|
272 |
layout="horizontal",
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
git+https://github.com/huggingface/transformers
|
2 |
torch
|
3 |
yt-dlp
|
4 |
-
punctuators
|
|
|
|
1 |
git+https://github.com/huggingface/transformers
|
2 |
torch
|
3 |
yt-dlp
|
4 |
+
punctuators==0.0.5
|
5 |
+
stable_whisper==2.16.0
|