Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from math import floor | |
from typing import Optional | |
import numpy as np | |
import spaces | |
import torch | |
import gradio as gr | |
from transformers import pipeline | |
from transformers.pipelines.audio_utils import ffmpeg_read | |
# configuration | |
MODEL_NAME = "kotoba-tech/kotoba-whisper-v2.0" | |
BATCH_SIZE = 16 | |
CHUNK_LENGTH_S = 15 | |
EXAMPLE = "./sample_diarization_japanese.mp3" | |
# device setting | |
if torch.cuda.is_available(): | |
torch_dtype = torch.bfloat16 | |
device = "cuda" | |
model_kwargs = {'attn_implementation': 'sdpa'} | |
else: | |
torch_dtype = torch.float32 | |
device = "cpu" | |
model_kwargs = {} | |
# define the pipeline | |
pipe = pipeline( | |
model=MODEL_NAME, | |
chunk_length_s=CHUNK_LENGTH_S, | |
batch_size=BATCH_SIZE, | |
torch_dtype=torch_dtype, | |
device=device, | |
model_kwargs=model_kwargs, | |
trust_remote_code=True | |
) | |
def format_time(start: Optional[float], end: Optional[float]): | |
def _format_time(seconds: Optional[float]): | |
if seconds is None: | |
return "complete " | |
minutes = floor(seconds / 60) | |
hours = floor(seconds / 3600) | |
seconds = seconds - hours * 3600 - minutes * 60 | |
m_seconds = floor(round(seconds - floor(seconds), 3) * 10 ** 3) | |
seconds = floor(seconds) | |
return f'{hours:02}:{minutes:02}:{seconds:02}.{m_seconds:03}' | |
return f"[{_format_time(start)}-> {_format_time(end)}]:" | |
def get_prediction(inputs, prompt: Optional[str]): | |
generate_kwargs = {"language": "ja", "task": "transcribe"} | |
if prompt: | |
generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors='pt').to(device) | |
prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs) | |
text = "".join([c['text'] for c in prediction['chunks']]) | |
text_timestamped = "\n".join([f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks']]) | |
return text, text_timestamped | |
def transcribe(inputs: str, prompt): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
with open(inputs, "rb") as f: | |
inputs = f.read() | |
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
array_pad = np.zeros(int(pipe.feature_extractor.sampling_rate * 0.5)) | |
inputs = np.concatenate([array_pad, inputs, array_pad]) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
return get_prediction(inputs, prompt) | |
demo = gr.Blocks() | |
description = (f"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses Kotoba-Whisper " | |
f"checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio" | |
f" files of arbitrary length.") | |
title = f"Transcribe Audio with {os.path.basename(MODEL_NAME)}" | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="microphone", type="filepath"), | |
gr.Textbox(lines=1, placeholder="Prompt"), | |
], | |
outputs=["text", "text"], | |
title=title, | |
description=description, | |
allow_flagging="never", | |
examples=EXAMPLE | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
gr.Textbox(lines=1, placeholder="Prompt"), | |
], | |
outputs=["text", "text"], | |
title=title, | |
description=description, | |
allow_flagging="never", | |
examples=EXAMPLE | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"]) | |
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True) | |