asahi417's picture
fix
5734c47
raw
history blame
3.67 kB
import os
from math import floor
from typing import Optional
import spaces
import torch
import gradio as gr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
# configuration
MODEL_NAME = "kotoba-tech/kotoba-whisper-bilingual-v1.0"
BATCH_SIZE = 16
CHUNK_LENGTH_S = 15
# device setting
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
device = "cuda"
model_kwargs = {'attn_implementation': 'sdpa'}
else:
torch_dtype = torch.float32
device = "cpu"
model_kwargs = {}
# define the pipeline
pipe = pipeline(
model=MODEL_NAME,
chunk_length_s=CHUNK_LENGTH_S,
batch_size=BATCH_SIZE,
torch_dtype=torch_dtype,
device=device,
model_kwargs=model_kwargs,
trust_remote_code=True
)
def format_time(start: Optional[float], end: Optional[float]):
def _format_time(seconds: Optional[float]):
if seconds is None:
return "complete "
minutes = floor(seconds / 60)
hours = floor(seconds / 3600)
seconds = seconds - hours * 3600 - minutes * 60
m_seconds = floor(round(seconds - floor(seconds), 3) * 10 ** 3)
seconds = floor(seconds)
return f'{hours:02}:{minutes:02}:{seconds:02}.{m_seconds:03}'
return f"[{_format_time(start)}-> {_format_time(end)}]:"
@spaces.GPU
def get_prediction(inputs, task: str, language: Optional[str]):
generate_kwargs = {"task": task, "language": language}
prediction = pipe(inputs, return_timestamps=True, generate_kwargs=generate_kwargs)
text = "".join([c['text'] for c in prediction['chunks']])
text_timestamped = "\n".join([f"{format_time(*c['timestamp'])} {c['text']}" for c in prediction['chunks']])
return text, text_timestamped
def transcribe(inputs: str, task: str, language: str):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
with open(inputs, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
return get_prediction(inputs, task, language)
demo = gr.Blocks()
description = (f"Kotoba-whisper-bilingual is speech transcribe and translation model for English and Japanese! Demo "
f"[{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe/translate audio"
f" files of arbitrary length. Make sure to choose the desired language of the transcription from the tab.")
title = f"Transcribe/translate Japanese & English Audio with Kotoba-Whisper-Bilingual"
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
gr.Radio(["ja", "en"], label="Output Language", value="ja")
],
outputs=["text", "text"],
title=title,
description=description,
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", type="filepath", label="Audio file"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
gr.Radio(["ja", "en"], label="Output Language", value="ja")
],
outputs=["text", "text"],
title=title,
description=description,
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"])
demo.queue(api_open=False, default_concurrency_limit=40).launch(show_api=False, show_error=True)