mischeiwiller commited on
Commit
0344d09
β€’
1 Parent(s): d610df9

Update kornia_aug.py

Browse files
Files changed (1) hide show
  1. kornia_aug.py +11 -10
kornia_aug.py CHANGED
@@ -6,6 +6,7 @@ from torchvision.transforms import functional as F
6
  from torchvision.utils import make_grid
7
  from streamlit_ace import st_ace
8
  from PIL import Image
 
9
 
10
  IS_LOCAL = False # Change this
11
 
@@ -34,25 +35,23 @@ else:
34
  scaler = int(im.height / 2)
35
  st.sidebar.image(im, caption="Input Image", width=256)
36
 
37
- image = F.pil_to_tensor(im).float() / 255
 
38
 
39
  # batch size is just for show
40
  batch_size = st.sidebar.slider("batch_size", min_value=4, max_value=16, value=8)
41
 
42
- gpu = st.sidebar.checkbox("Use GPU!", value=True)
43
  if not gpu:
44
- st.sidebar.markdown("With Kornia you do ops on the GPU!")
45
  device = torch.device("cpu")
46
  else:
47
- if not IS_LOCAL:
48
- st.sidebar.markdown("(GPU Not available on hosted demo, try on your local!)")
49
- # Credits
50
- st.sidebar.caption("Demo made by [Ceyda Cinarel](https://linktr.ee/ceydai)")
51
- st.sidebar.markdown("Clone [Code](https://github.com/cceyda/kornia-demo)")
52
  device = torch.device("cpu")
53
  else:
54
  st.sidebar.markdown("Running on GPU~")
55
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
56
 
57
  predefined_transforms = [
58
  """
@@ -119,7 +118,9 @@ cols = st.columns(4)
119
  if transformeds is not None:
120
  for i, x in enumerate(transformeds):
121
  i = i % 4
122
- cols[i].image(F.to_pil_image(x), use_column_width=True)
 
 
123
 
124
  st.markdown(
125
  "There are a lot more transformations available: [Documentation](https://kornia.readthedocs.io/en/latest/augmentation.module.html)"
 
6
  from torchvision.utils import make_grid
7
  from streamlit_ace import st_ace
8
  from PIL import Image
9
+ import numpy as np
10
 
11
  IS_LOCAL = False # Change this
12
 
 
35
  scaler = int(im.height / 2)
36
  st.sidebar.image(im, caption="Input Image", width=256)
37
 
38
+ # Convert PIL Image to torch tensor
39
+ image = torch.from_numpy(np.array(im).transpose((2, 0, 1))).float() / 255.0
40
 
41
  # batch size is just for show
42
  batch_size = st.sidebar.slider("batch_size", min_value=4, max_value=16, value=8)
43
 
44
+ gpu = st.sidebar.checkbox("Use GPU!", value=False)
45
  if not gpu:
46
+ st.sidebar.markdown("Using CPU for operations.")
47
  device = torch.device("cpu")
48
  else:
49
+ if not IS_LOCAL or not torch.cuda.is_available():
50
+ st.sidebar.markdown("GPU not available, using CPU.")
 
 
 
51
  device = torch.device("cpu")
52
  else:
53
  st.sidebar.markdown("Running on GPU~")
54
+ device = torch.device("cuda:0")
55
 
56
  predefined_transforms = [
57
  """
 
118
  if transformeds is not None:
119
  for i, x in enumerate(transformeds):
120
  i = i % 4
121
+ img_np = x.cpu().numpy().transpose((1, 2, 0))
122
+ img_np = (img_np * 255).astype(np.uint8)
123
+ cols[i].image(img_np, use_column_width=True)
124
 
125
  st.markdown(
126
  "There are a lot more transformations available: [Documentation](https://kornia.readthedocs.io/en/latest/augmentation.module.html)"