Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import matplotlib.pyplot as plt | |
import torch | |
import matplotlib | |
matplotlib.use('Agg') | |
import gradio as gr | |
from kornia.geometry.line import ParametrizedLine, fit_line | |
def inference(point1, point2, point3, point4): | |
std = 1.2 # standard deviation for the points | |
num_points = 50 # total number of points | |
# create a baseline | |
p0 = torch.tensor([point1, point2], dtype=torch.float32) | |
p1 = torch.tensor([point3, point4], dtype=torch.float32) | |
l1 = ParametrizedLine.through(p0, p1) | |
# sample some points and weights | |
pts, w = [], [] | |
for t in torch.linspace(-10, 10, num_points): | |
p2 = l1.point_at(t) | |
p2_noise = torch.rand_like(p2) * std | |
p2 += p2_noise | |
pts.append(p2) | |
w.append(1 - p2_noise.mean()) | |
pts = torch.stack(pts) | |
w = torch.stack(w) | |
if len(pts.shape) == 2: | |
pts = pts.unsqueeze(0) | |
if len(w.shape) == 1: | |
w = w.unsqueeze(0) | |
l2 = fit_line(pts, w) | |
# project some points along the estimated line | |
p3 = l2.point_at(torch.tensor(-10.0)) | |
p4 = l2.point_at(torch.tensor(10.0)) | |
X = torch.stack((p3, p4)).squeeze().detach().numpy() | |
X_pts = pts.squeeze().detach().numpy() | |
fig, ax = plt.subplots() | |
ax.plot(X_pts[:, 0], X_pts[:, 1], 'ro') | |
ax.plot(X[:, 0], X[:, 1]) | |
ax.set_xlim(X_pts[:, 0].min() - 1, X_pts[:, 0].max() + 1) | |
ax.set_ylim(X_pts[:, 1].min() - 1, X_pts[:, 1].max() + 1) | |
return fig | |
inputs = [ | |
gr.Slider(0.0, 10.0, value=0.0, label="Point 1 X"), | |
gr.Slider(0.0, 10.0, value=0.0, label="Point 1 Y"), | |
gr.Slider(0.0, 10.0, value=10.0, label="Point 2 X"), | |
gr.Slider(0.0, 10.0, value=10.0, label="Point 2 Y"), | |
] | |
outputs = gr.Plot() | |
examples = [ | |
[0.0, 0.0, 10.0, 10.0], | |
] | |
title = 'Line Fitting' | |
demo = gr.Interface( | |
fn=inference, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
cache_examples=True, | |
theme='huggingface', | |
live=True, | |
examples=examples, | |
) | |
demo.launch() |