Line-Fitting / app.py
mischeiwiller's picture
fix: resolve IndexError in line fitting visualization
9526595 verified
import matplotlib.pyplot as plt
import torch
import matplotlib
matplotlib.use('Agg')
import gradio as gr
from kornia.geometry.line import ParametrizedLine, fit_line
def inference(point1, point2, point3, point4):
std = 1.2 # standard deviation for the points
num_points = 50 # total number of points
# create a baseline
p0 = torch.tensor([point1, point2], dtype=torch.float32)
p1 = torch.tensor([point3, point4], dtype=torch.float32)
l1 = ParametrizedLine.through(p0, p1)
# sample some points and weights
pts, w = [], []
for t in torch.linspace(-10, 10, num_points):
p2 = l1.point_at(t)
p2_noise = torch.rand_like(p2) * std
p2 += p2_noise
pts.append(p2)
w.append(1 - p2_noise.mean())
pts = torch.stack(pts)
w = torch.stack(w)
if len(pts.shape) == 2:
pts = pts.unsqueeze(0)
if len(w.shape) == 1:
w = w.unsqueeze(0)
l2 = fit_line(pts, w)
# project some points along the estimated line
p3 = l2.point_at(torch.tensor(-10.0))
p4 = l2.point_at(torch.tensor(10.0))
X = torch.stack((p3, p4)).squeeze().detach().numpy()
X_pts = pts.squeeze().detach().numpy()
fig, ax = plt.subplots()
ax.plot(X_pts[:, 0], X_pts[:, 1], 'ro')
ax.plot(X[:, 0], X[:, 1])
ax.set_xlim(X_pts[:, 0].min() - 1, X_pts[:, 0].max() + 1)
ax.set_ylim(X_pts[:, 1].min() - 1, X_pts[:, 1].max() + 1)
return fig
inputs = [
gr.Slider(0.0, 10.0, value=0.0, label="Point 1 X"),
gr.Slider(0.0, 10.0, value=0.0, label="Point 1 Y"),
gr.Slider(0.0, 10.0, value=10.0, label="Point 2 X"),
gr.Slider(0.0, 10.0, value=10.0, label="Point 2 Y"),
]
outputs = gr.Plot()
examples = [
[0.0, 0.0, 10.0, 10.0],
]
title = 'Line Fitting'
demo = gr.Interface(
fn=inference,
inputs=inputs,
outputs=outputs,
title=title,
cache_examples=True,
theme='huggingface',
live=True,
examples=examples,
)
demo.launch()