mischeiwiller commited on
Commit
f0bdc5a
·
verified ·
1 Parent(s): ffdea4b

fix gradio sdk upgrade issues

Browse files
Files changed (1) hide show
  1. app.py +37 -27
app.py CHANGED
@@ -8,65 +8,75 @@ from kornia_moons.feature import *
8
  from kornia_moons.viz import *
9
  import gradio as gr
10
 
11
- def load_torch_image(fname):
12
- img: Tensor = K.io.load_image(fname, K.io.ImageLoadType.RGB32)
13
- img = img[None] # 1xCxHxW / fp32 / [0, 1]
14
- img = K.geometry.resize(img, (700, 700))
15
- return img
 
 
 
 
 
 
16
 
17
- def inference(file1,file2):
18
- fname1 = file1.name
19
- fname2 = file2.name
20
- img1 = load_torch_image(fname1)
21
- img2 = load_torch_image(fname2)
22
-
23
  matcher = KF.LoFTR(pretrained='outdoor')
24
-
25
- input_dict = {"image0": K.color.rgb_to_grayscale(img1), # LofTR works on grayscale images only
26
- "image1": K.color.rgb_to_grayscale(img2)}
27
-
 
28
  with torch.no_grad():
29
  correspondences = matcher(input_dict)
 
30
  mkpts0 = correspondences['keypoints0'].cpu().numpy()
31
  mkpts1 = correspondences['keypoints1'].cpu().numpy()
32
  H, inliers = cv2.findFundamentalMat(mkpts0, mkpts1, cv2.USAC_MAGSAC, 0.5, 0.999, 100000)
33
  inliers = inliers > 0
 
34
  fig, ax = plt.subplots()
35
-
36
  draw_LAF_matches(
37
  KF.laf_from_center_scale_ori(torch.from_numpy(mkpts0).view(1,-1, 2),
38
  torch.ones(mkpts0.shape[0]).view(1,-1, 1, 1),
39
  torch.ones(mkpts0.shape[0]).view(1,-1, 1)),
40
-
41
  KF.laf_from_center_scale_ori(torch.from_numpy(mkpts1).view(1,-1, 2),
42
  torch.ones(mkpts1.shape[0]).view(1,-1, 1, 1),
43
  torch.ones(mkpts1.shape[0]).view(1,-1, 1)),
44
  torch.arange(mkpts0.shape[0]).view(-1,1).repeat(1,2),
45
- K.tensor_to_image(img1),
46
- K.tensor_to_image(img2),
47
  inliers,
48
  draw_dict={'inlier_color': (0.2, 1, 0.2),
49
  'tentative_color': None,
50
- 'feature_color': (0.2, 0.5, 1), 'vertical': False}, ax=ax)
 
 
51
  plt.axis('off')
52
- fig.savefig('example.jpg',dpi=110,bbox_inches='tight')
53
- return 'example.jpg'
54
 
55
 
56
  title = "Kornia-Loftr"
57
  description = "Gradio demo for Kornia-Loftr: Detector-Free Local Feature Matching with Transformers. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
58
  article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Open Source Differentiable Computer Vision Library</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a href='https://github.com/zju3dv/LoFTR' target='_blank'>LoFTR Github</a> | <a href='https://arxiv.org/abs/2104.00680' target='_blank'>LoFTR: Detector-Free Local Feature Matching with Transformers</a></p>"
59
  css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
60
-
61
  examples = [['kn_church-2.jpg','kn_church-8.jpg']]
62
- gr.Interface(
 
63
  inference,
64
- [gr.inputs.Image(type="file", label="Input1"),gr.inputs.Image(type="file", label="Input2")],
65
- gr.outputs.Image(type="file", label="Output"),
 
 
66
  title=title,
67
  description=description,
68
  article=article,
69
  enable_queue=True,
70
  examples=examples,
71
  css=css
72
- ).launch(debug=True)
 
 
 
8
  from kornia_moons.viz import *
9
  import gradio as gr
10
 
11
+ def load_torch_image(img):
12
+ if isinstance(img, np.ndarray):
13
+ # If the input is already a numpy array, convert it to a tensor
14
+ img_tensor = K.image_to_tensor(img).float() / 255.0
15
+ else:
16
+ # If it's a file path, load it using kornia
17
+ img_tensor = K.io.load_image(img, K.io.ImageLoadType.RGB32)
18
+
19
+ img_tensor = img_tensor.unsqueeze(0) # Add batch dimension: 1xCxHxW
20
+ img_tensor = K.geometry.resize(img_tensor, (700, 700))
21
+ return img_tensor
22
 
23
+ def inference(img1, img2):
24
+ img1_tensor = load_torch_image(img1)
25
+ img2_tensor = load_torch_image(img2)
26
+
 
 
27
  matcher = KF.LoFTR(pretrained='outdoor')
28
+ input_dict = {
29
+ "image0": K.color.rgb_to_grayscale(img1_tensor), # LoFTR works on grayscale images only
30
+ "image1": K.color.rgb_to_grayscale(img2_tensor)
31
+ }
32
+
33
  with torch.no_grad():
34
  correspondences = matcher(input_dict)
35
+
36
  mkpts0 = correspondences['keypoints0'].cpu().numpy()
37
  mkpts1 = correspondences['keypoints1'].cpu().numpy()
38
  H, inliers = cv2.findFundamentalMat(mkpts0, mkpts1, cv2.USAC_MAGSAC, 0.5, 0.999, 100000)
39
  inliers = inliers > 0
40
+
41
  fig, ax = plt.subplots()
 
42
  draw_LAF_matches(
43
  KF.laf_from_center_scale_ori(torch.from_numpy(mkpts0).view(1,-1, 2),
44
  torch.ones(mkpts0.shape[0]).view(1,-1, 1, 1),
45
  torch.ones(mkpts0.shape[0]).view(1,-1, 1)),
 
46
  KF.laf_from_center_scale_ori(torch.from_numpy(mkpts1).view(1,-1, 2),
47
  torch.ones(mkpts1.shape[0]).view(1,-1, 1, 1),
48
  torch.ones(mkpts1.shape[0]).view(1,-1, 1)),
49
  torch.arange(mkpts0.shape[0]).view(-1,1).repeat(1,2),
50
+ K.tensor_to_image(img1_tensor.squeeze()),
51
+ K.tensor_to_image(img2_tensor.squeeze()),
52
  inliers,
53
  draw_dict={'inlier_color': (0.2, 1, 0.2),
54
  'tentative_color': None,
55
+ 'feature_color': (0.2, 0.5, 1), 'vertical': False},
56
+ ax=ax
57
+ )
58
  plt.axis('off')
59
+ return fig
 
60
 
61
 
62
  title = "Kornia-Loftr"
63
  description = "Gradio demo for Kornia-Loftr: Detector-Free Local Feature Matching with Transformers. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
64
  article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Open Source Differentiable Computer Vision Library</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a href='https://github.com/zju3dv/LoFTR' target='_blank'>LoFTR Github</a> | <a href='https://arxiv.org/abs/2104.00680' target='_blank'>LoFTR: Detector-Free Local Feature Matching with Transformers</a></p>"
65
  css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
 
66
  examples = [['kn_church-2.jpg','kn_church-8.jpg']]
67
+
68
+ iface = gr.Interface(
69
  inference,
70
+ [
71
+ gr.Image(type="numpy", label="Input1"),
72
+ gr.Image(type="numpy", label="Input2")],
73
+ gr.Plot(label="Feature Matches"),
74
  title=title,
75
  description=description,
76
  article=article,
77
  enable_queue=True,
78
  examples=examples,
79
  css=css
80
+ )
81
+
82
+ iface.launch(debug=True)