Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,70 +1,240 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
temperature,
|
| 11 |
-
top_p,
|
| 12 |
-
hf_token: gr.OAuthToken,
|
| 13 |
-
):
|
| 14 |
-
"""
|
| 15 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 16 |
-
"""
|
| 17 |
-
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
|
| 18 |
-
|
| 19 |
-
messages = [{"role": "system", "content": system_message}]
|
| 20 |
-
|
| 21 |
-
messages.extend(history)
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
"""
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
minimum=0.1,
|
| 55 |
maximum=1.0,
|
| 56 |
value=0.95,
|
| 57 |
step=0.05,
|
| 58 |
-
label="Top-p (
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
| 70 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
from peft import PeftModel, PeftConfig
|
| 4 |
+
import torch
|
| 5 |
|
| 6 |
+
# Your model details
|
| 7 |
+
PEFT_MODEL_ID = "Reubencf/gemma3-goan-finetuned"
|
| 8 |
+
BASE_MODEL_ID = "google/gemma-2-2b-it" # Base model used for fine-tuning
|
| 9 |
|
| 10 |
+
# UI Configuration
|
| 11 |
+
TITLE = "π΄ Gemma Goan Q&A Bot"
|
| 12 |
+
DESCRIPTION = """
|
| 13 |
+
This is a Gemma-2-2B model fine-tuned on Goan Q&A dataset using LoRA.
|
| 14 |
+
Ask questions about Goa, Konkani culture, or general topics!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
**Model**: [Reubencf/gemma3-goan-finetuned](https://huggingface.co/Reubencf/gemma3-goan-finetuned)
|
| 17 |
+
**Base Model**: google/gemma-2-2b-it
|
| 18 |
+
"""
|
| 19 |
|
| 20 |
+
print("Loading model... This might take a few minutes on first run.")
|
| 21 |
|
| 22 |
+
try:
|
| 23 |
+
# Load LoRA config to check base model
|
| 24 |
+
peft_config = PeftConfig.from_pretrained(PEFT_MODEL_ID)
|
| 25 |
+
|
| 26 |
+
# Load base model
|
| 27 |
+
print(f"Loading base model: {BASE_MODEL_ID}")
|
| 28 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
+
BASE_MODEL_ID,
|
| 30 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 31 |
+
device_map="auto",
|
| 32 |
+
low_cpu_mem_usage=True,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Load tokenizer
|
| 36 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID)
|
| 37 |
+
if tokenizer.pad_token is None:
|
| 38 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 39 |
+
tokenizer.padding_side = "right"
|
| 40 |
+
|
| 41 |
+
# Load LoRA adapter
|
| 42 |
+
print(f"Loading LoRA adapter: {PEFT_MODEL_ID}")
|
| 43 |
+
model = PeftModel.from_pretrained(
|
| 44 |
+
base_model,
|
| 45 |
+
PEFT_MODEL_ID,
|
| 46 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Set to evaluation mode
|
| 50 |
+
model.eval()
|
| 51 |
+
print("β
Model loaded successfully!")
|
| 52 |
+
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"Error loading model: {e}")
|
| 55 |
+
print("Trying alternative loading method...")
|
| 56 |
+
|
| 57 |
+
# Alternative: Try loading as AutoPeftModel
|
| 58 |
+
from peft import AutoPeftModelForCausalLM
|
| 59 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
| 60 |
+
PEFT_MODEL_ID,
|
| 61 |
+
device_map="auto",
|
| 62 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 63 |
+
low_cpu_mem_usage=True,
|
| 64 |
+
)
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained(PEFT_MODEL_ID)
|
| 66 |
+
if tokenizer.pad_token is None:
|
| 67 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 68 |
|
| 69 |
+
def generate_response(
|
| 70 |
+
message,
|
| 71 |
+
history,
|
| 72 |
+
temperature=0.7,
|
| 73 |
+
max_new_tokens=256,
|
| 74 |
+
top_p=0.95,
|
| 75 |
+
repetition_penalty=1.1,
|
| 76 |
+
):
|
| 77 |
+
"""Generate response using the fine-tuned model"""
|
| 78 |
+
|
| 79 |
+
# Format the prompt using Gemma chat template
|
| 80 |
+
if history:
|
| 81 |
+
# Build conversation history
|
| 82 |
+
conversation = ""
|
| 83 |
+
for user, assistant in history:
|
| 84 |
+
conversation += f"<start_of_turn>user\n{user}<end_of_turn>\n"
|
| 85 |
+
conversation += f"<start_of_turn>model\n{assistant}<end_of_turn>\n"
|
| 86 |
+
conversation += f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
|
| 87 |
+
else:
|
| 88 |
+
# Single turn conversation
|
| 89 |
+
conversation = f"<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n"
|
| 90 |
+
|
| 91 |
+
# Tokenize
|
| 92 |
+
inputs = tokenizer(
|
| 93 |
+
conversation,
|
| 94 |
+
return_tensors="pt",
|
| 95 |
+
truncation=True,
|
| 96 |
+
max_length=1024
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Move to device
|
| 100 |
+
device = next(model.parameters()).device
|
| 101 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 102 |
+
|
| 103 |
+
# Generate
|
| 104 |
+
try:
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
outputs = model.generate(
|
| 107 |
+
**inputs,
|
| 108 |
+
max_new_tokens=max_new_tokens,
|
| 109 |
+
temperature=temperature,
|
| 110 |
+
top_p=top_p,
|
| 111 |
+
repetition_penalty=repetition_penalty,
|
| 112 |
+
do_sample=True,
|
| 113 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 114 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Decode only the generated portion
|
| 118 |
+
generated_tokens = outputs[0][inputs['input_ids'].shape[1]:]
|
| 119 |
+
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
| 120 |
+
|
| 121 |
+
# Clean up response
|
| 122 |
+
response = response.replace("<end_of_turn>", "").strip()
|
| 123 |
+
|
| 124 |
+
return response
|
| 125 |
+
|
| 126 |
+
except Exception as e:
|
| 127 |
+
return f"Error generating response: {str(e)}"
|
| 128 |
|
| 129 |
+
# Example questions
|
| 130 |
+
examples = [
|
| 131 |
+
["What is Bebinca?"],
|
| 132 |
+
["who is promod sawant?"],
|
| 133 |
+
["Explain the history of Old Goa"],
|
| 134 |
+
["What are some popular festivals in Goa?"],
|
| 135 |
+
]
|
| 136 |
|
| 137 |
+
# Custom CSS for better appearance
|
| 138 |
+
custom_css = """
|
| 139 |
+
#component-0 {
|
| 140 |
+
max-width: 900px;
|
| 141 |
+
margin: auto;
|
| 142 |
+
}
|
| 143 |
+
.gradio-container {
|
| 144 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 145 |
+
}
|
| 146 |
"""
|
| 147 |
+
|
| 148 |
+
# Create Gradio Chat Interface
|
| 149 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
|
| 150 |
+
gr.Markdown(f"# {TITLE}")
|
| 151 |
+
gr.Markdown(DESCRIPTION)
|
| 152 |
+
|
| 153 |
+
chatbot = gr.Chatbot(
|
| 154 |
+
height=450,
|
| 155 |
+
show_label=False,
|
| 156 |
+
avatar_images=(None, "π€"),
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
msg = gr.Textbox(
|
| 160 |
+
label="Ask a question",
|
| 161 |
+
placeholder="Type your question about Goa, Konkani culture, or any topic...",
|
| 162 |
+
lines=2,
|
| 163 |
+
)
|
| 164 |
+
|
| 165 |
+
with gr.Accordion("βοΈ Generation Settings", open=False):
|
| 166 |
+
temperature = gr.Slider(
|
| 167 |
+
minimum=0.1,
|
| 168 |
+
maximum=1.0,
|
| 169 |
+
value=0.7,
|
| 170 |
+
step=0.1,
|
| 171 |
+
label="Temperature (Creativity)",
|
| 172 |
+
info="Higher = more creative, Lower = more focused"
|
| 173 |
+
)
|
| 174 |
+
max_tokens = gr.Slider(
|
| 175 |
+
minimum=50,
|
| 176 |
+
maximum=512,
|
| 177 |
+
value=256,
|
| 178 |
+
step=10,
|
| 179 |
+
label="Max New Tokens",
|
| 180 |
+
info="Maximum length of the response"
|
| 181 |
+
)
|
| 182 |
+
top_p = gr.Slider(
|
| 183 |
minimum=0.1,
|
| 184 |
maximum=1.0,
|
| 185 |
value=0.95,
|
| 186 |
step=0.05,
|
| 187 |
+
label="Top-p (Nucleus Sampling)",
|
| 188 |
+
)
|
| 189 |
+
rep_penalty = gr.Slider(
|
| 190 |
+
minimum=1.0,
|
| 191 |
+
maximum=2.0,
|
| 192 |
+
value=1.1,
|
| 193 |
+
step=0.1,
|
| 194 |
+
label="Repetition Penalty",
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
with gr.Row():
|
| 198 |
+
clear = gr.Button("ποΈ Clear")
|
| 199 |
+
submit = gr.Button("π€ Send", variant="primary")
|
| 200 |
+
|
| 201 |
+
gr.Examples(
|
| 202 |
+
examples=examples,
|
| 203 |
+
inputs=msg,
|
| 204 |
+
label="Example Questions:",
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
# Set up event handlers
|
| 208 |
+
def user(user_message, history):
|
| 209 |
+
return "", history + [[user_message, None]]
|
| 210 |
+
|
| 211 |
+
def bot(history, temp, max_tok, top_p_val, rep_pen):
|
| 212 |
+
user_message = history[-1][0]
|
| 213 |
+
bot_response = generate_response(
|
| 214 |
+
user_message,
|
| 215 |
+
history[:-1],
|
| 216 |
+
temperature=temp,
|
| 217 |
+
max_new_tokens=max_tok,
|
| 218 |
+
top_p=top_p_val,
|
| 219 |
+
repetition_penalty=rep_pen,
|
| 220 |
+
)
|
| 221 |
+
history[-1][1] = bot_response
|
| 222 |
+
return history
|
| 223 |
+
|
| 224 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 225 |
+
bot, [chatbot, temperature, max_tokens, top_p, rep_penalty], chatbot
|
| 226 |
+
)
|
| 227 |
+
submit.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 228 |
+
bot, [chatbot, temperature, max_tokens, top_p, rep_penalty], chatbot
|
| 229 |
+
)
|
| 230 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 231 |
+
|
| 232 |
+
gr.Markdown("""
|
| 233 |
+
---
|
| 234 |
+
### π Note
|
| 235 |
+
This model is fine-tuned specifically on Goan Q&A data. Responses are generated based on patterns learned from the training dataset.
|
| 236 |
+
For best results, ask questions about Goa, its culture, history, cuisine, and related topics.
|
| 237 |
+
""")
|
| 238 |
|
| 239 |
if __name__ == "__main__":
|
| 240 |
+
demo.launch()
|