Spaces:
Build error
Build error
| from turtle import title | |
| import gradio as gr | |
| from huggingface_hub import from_pretrained_keras | |
| import tensorflow as tf | |
| import numpy as np | |
| from PIL import Image | |
| import io | |
| import base64 | |
| model = tf.keras.models.load_model("./tf_model.h5") | |
| def predict(image): | |
| img = np.array(image) | |
| original_shape = img.shape[:2] | |
| im = tf.image.resize(img, (128, 128)) | |
| im = tf.cast(im, tf.float32) / 255.0 | |
| pred_mask = model.predict(im[tf.newaxis, ...]) | |
| # take the best performing class for each pixel | |
| # the output of argmax looks like this [[1, 2, 0], ...] | |
| pred_mask_arg = tf.argmax(pred_mask, axis=-1) | |
| # convert the prediction mask into binary masks for each class | |
| binary_masks = {} | |
| # when we take tf.argmax() over pred_mask, it becomes a tensor object | |
| # the shape becomes TensorShape object, looking like this TensorShape([128]) | |
| # we need to take get shape, convert to list and take the best one | |
| rows = pred_mask_arg[0][1].get_shape().as_list()[0] | |
| cols = pred_mask_arg[0][2].get_shape().as_list()[0] | |
| for cls in range(pred_mask.shape[-1]): | |
| binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class | |
| for row in range(rows): | |
| for col in range(cols): | |
| if pred_mask_arg[0][row][col] == cls: | |
| binary_masks[f"mask_{cls}"][row][col] = 1 | |
| else: | |
| binary_masks[f"mask_{cls}"][row][col] = 0 | |
| mask = binary_masks[f"mask_{cls}"] | |
| mask *= 255 | |
| mask = np.array(Image.fromarray(mask).convert("L")) | |
| mask = tf.image.resize(mask[..., tf.newaxis], original_shape) | |
| mask = tf.cast(mask, tf.uint8) | |
| mask = mask.numpy().squeeze() | |
| return mask | |
| title = '<h1 style="text-align: center;">Segment Pets</h1>' | |
| description = """ | |
| ## About | |
| This space demonstrates the use of a semantic segmentation model to segment pets and classify them | |
| according to the pixels. | |
| ## π To run | |
| Upload a pet image and hit submit or select one from the given examples | |
| """ | |
| inputs = gr.inputs.Image(label="Upload a pet image", type = 'pil', optional=False) | |
| outputs = [ | |
| gr.outputs.Image(label="Segmentation") | |
| # , gr.outputs.Textbox(type="auto",label="Pet Prediction") | |
| ] | |
| examples = [ | |
| "./examples/cat_1.jpg", | |
| "./examples/cat_2.jpg", | |
| "./examples/dog_1.jpg", | |
| "./examples/dog_2.jpg", | |
| ] | |
| interface = gr.Interface(fn=predict, | |
| inputs=inputs, | |
| outputs=outputs, | |
| title = title, | |
| description=description, | |
| examples=examples | |
| ) | |
| interface.launch() |