|
""" |
|
@Desc: 全局配置文件读取 |
|
""" |
|
|
|
import os |
|
import shutil |
|
from typing import Dict, List |
|
|
|
import torch |
|
import yaml |
|
|
|
from common.log import logger |
|
|
|
|
|
cuda_available = torch.cuda.is_available() |
|
|
|
|
|
class Resample_config: |
|
"""重采样配置""" |
|
|
|
def __init__(self, in_dir: str, out_dir: str, sampling_rate: int = 44100): |
|
self.sampling_rate: int = sampling_rate |
|
self.in_dir: str = in_dir |
|
self.out_dir: str = out_dir |
|
|
|
@classmethod |
|
def from_dict(cls, dataset_path: str, data: Dict[str, any]): |
|
"""从字典中生成实例""" |
|
|
|
|
|
data["in_dir"] = os.path.join(dataset_path, data["in_dir"]) |
|
data["out_dir"] = os.path.join(dataset_path, data["out_dir"]) |
|
|
|
return cls(**data) |
|
|
|
|
|
class Preprocess_text_config: |
|
"""数据预处理配置""" |
|
|
|
def __init__( |
|
self, |
|
transcription_path: str, |
|
cleaned_path: str, |
|
train_path: str, |
|
val_path: str, |
|
config_path: str, |
|
val_per_lang: int = 5, |
|
max_val_total: int = 10000, |
|
clean: bool = True, |
|
): |
|
self.transcription_path: str = ( |
|
transcription_path |
|
) |
|
self.cleaned_path: str = ( |
|
cleaned_path |
|
) |
|
self.train_path: str = ( |
|
train_path |
|
) |
|
self.val_path: str = ( |
|
val_path |
|
) |
|
self.config_path: str = config_path |
|
self.val_per_lang: int = val_per_lang |
|
self.max_val_total: int = ( |
|
max_val_total |
|
) |
|
self.clean: bool = clean |
|
|
|
@classmethod |
|
def from_dict(cls, dataset_path: str, data: Dict[str, any]): |
|
"""从字典中生成实例""" |
|
|
|
data["transcription_path"] = os.path.join( |
|
dataset_path, data["transcription_path"] |
|
) |
|
if data["cleaned_path"] == "" or data["cleaned_path"] is None: |
|
data["cleaned_path"] = None |
|
else: |
|
data["cleaned_path"] = os.path.join(dataset_path, data["cleaned_path"]) |
|
data["train_path"] = os.path.join(dataset_path, data["train_path"]) |
|
data["val_path"] = os.path.join(dataset_path, data["val_path"]) |
|
data["config_path"] = os.path.join(dataset_path, data["config_path"]) |
|
|
|
return cls(**data) |
|
|
|
|
|
class Bert_gen_config: |
|
"""bert_gen 配置""" |
|
|
|
def __init__( |
|
self, |
|
config_path: str, |
|
num_processes: int = 2, |
|
device: str = "cuda", |
|
use_multi_device: bool = False, |
|
): |
|
self.config_path = config_path |
|
self.num_processes = num_processes |
|
if not cuda_available: |
|
device = "cpu" |
|
self.device = device |
|
self.use_multi_device = use_multi_device |
|
|
|
@classmethod |
|
def from_dict(cls, dataset_path: str, data: Dict[str, any]): |
|
data["config_path"] = os.path.join(dataset_path, data["config_path"]) |
|
|
|
return cls(**data) |
|
|
|
|
|
class Style_gen_config: |
|
"""style_gen 配置""" |
|
|
|
def __init__( |
|
self, |
|
config_path: str, |
|
num_processes: int = 4, |
|
device: str = "cuda", |
|
): |
|
self.config_path = config_path |
|
self.num_processes = num_processes |
|
if not cuda_available: |
|
device = "cpu" |
|
self.device = device |
|
|
|
@classmethod |
|
def from_dict(cls, dataset_path: str, data: Dict[str, any]): |
|
data["config_path"] = os.path.join(dataset_path, data["config_path"]) |
|
|
|
return cls(**data) |
|
|
|
|
|
class Train_ms_config: |
|
"""训练配置""" |
|
|
|
def __init__( |
|
self, |
|
config_path: str, |
|
env: Dict[str, any], |
|
|
|
model_dir: str, |
|
num_workers: int, |
|
spec_cache: bool, |
|
keep_ckpts: int, |
|
): |
|
self.env = env |
|
|
|
self.model_dir = model_dir |
|
self.config_path = config_path |
|
self.num_workers = num_workers |
|
self.spec_cache = spec_cache |
|
self.keep_ckpts = keep_ckpts |
|
|
|
@classmethod |
|
def from_dict(cls, dataset_path: str, data: Dict[str, any]): |
|
|
|
data["config_path"] = os.path.join(dataset_path, data["config_path"]) |
|
|
|
return cls(**data) |
|
|
|
|
|
class Webui_config: |
|
"""webui 配置 (for webui.py, not supported now)""" |
|
|
|
def __init__( |
|
self, |
|
device: str, |
|
model: str, |
|
config_path: str, |
|
language_identification_library: str, |
|
port: int = 7860, |
|
share: bool = False, |
|
debug: bool = False, |
|
): |
|
if not cuda_available: |
|
device = "cpu" |
|
self.device: str = device |
|
self.model: str = model |
|
self.config_path: str = config_path |
|
self.port: int = port |
|
self.share: bool = share |
|
self.debug: bool = debug |
|
self.language_identification_library: str = ( |
|
language_identification_library |
|
) |
|
|
|
@classmethod |
|
def from_dict(cls, dataset_path: str, data: Dict[str, any]): |
|
data["config_path"] = os.path.join(dataset_path, data["config_path"]) |
|
data["model"] = os.path.join(dataset_path, data["model"]) |
|
return cls(**data) |
|
|
|
|
|
class Server_config: |
|
def __init__( |
|
self, |
|
port: int = 5000, |
|
device: str = "cuda", |
|
limit: int = 100, |
|
language: str = "JP", |
|
origins: List[str] = None, |
|
): |
|
self.port: int = port |
|
if not cuda_available: |
|
device = "cpu" |
|
self.device: str = device |
|
self.language: str = language |
|
self.limit: int = limit |
|
self.origins: List[str] = origins |
|
|
|
@classmethod |
|
def from_dict(cls, data: Dict[str, any]): |
|
return cls(**data) |
|
|
|
|
|
class Translate_config: |
|
"""翻译api配置""" |
|
|
|
def __init__(self, app_key: str, secret_key: str): |
|
self.app_key = app_key |
|
self.secret_key = secret_key |
|
|
|
@classmethod |
|
def from_dict(cls, data: Dict[str, any]): |
|
return cls(**data) |
|
|
|
|
|
class Config: |
|
def __init__(self, config_path: str, path_config: dict[str, str]): |
|
if not os.path.isfile(config_path) and os.path.isfile("default_config.yml"): |
|
shutil.copy(src="default_config.yml", dst=config_path) |
|
logger.info( |
|
f"A configuration file {config_path} has been generated based on the default configuration file default_config.yml." |
|
) |
|
logger.info( |
|
"If you have no special needs, please do not modify default_config.yml." |
|
) |
|
|
|
with open(file=config_path, mode="r", encoding="utf-8") as file: |
|
yaml_config: Dict[str, any] = yaml.safe_load(file.read()) |
|
model_name: str = yaml_config["model_name"] |
|
self.model_name: str = model_name |
|
if "dataset_path" in yaml_config: |
|
dataset_path = yaml_config["dataset_path"] |
|
else: |
|
dataset_path = os.path.join(path_config["dataset_root"], model_name) |
|
self.dataset_path: str = dataset_path |
|
self.assets_root: str = path_config["assets_root"] |
|
self.out_dir = os.path.join(self.assets_root, model_name) |
|
self.resample_config: Resample_config = Resample_config.from_dict( |
|
dataset_path, yaml_config["resample"] |
|
) |
|
self.preprocess_text_config: Preprocess_text_config = ( |
|
Preprocess_text_config.from_dict( |
|
dataset_path, yaml_config["preprocess_text"] |
|
) |
|
) |
|
self.bert_gen_config: Bert_gen_config = Bert_gen_config.from_dict( |
|
dataset_path, yaml_config["bert_gen"] |
|
) |
|
self.style_gen_config: Style_gen_config = Style_gen_config.from_dict( |
|
dataset_path, yaml_config["style_gen"] |
|
) |
|
self.train_ms_config: Train_ms_config = Train_ms_config.from_dict( |
|
dataset_path, yaml_config["train_ms"] |
|
) |
|
self.webui_config: Webui_config = Webui_config.from_dict( |
|
dataset_path, yaml_config["webui"] |
|
) |
|
self.server_config: Server_config = Server_config.from_dict( |
|
yaml_config["server"] |
|
) |
|
|
|
|
|
|
|
|
|
|
|
with open(os.path.join("configs", "paths.yml"), "r", encoding="utf-8") as f: |
|
path_config: dict[str, str] = yaml.safe_load(f.read()) |
|
|
|
|
|
|
|
|
|
|
|
try: |
|
config = Config("config.yml", path_config) |
|
except (TypeError, KeyError): |
|
logger.warning("Old config.yml found. Replace it with default_config.yml.") |
|
shutil.copy(src="default_config.yml", dst="config.yml") |
|
config = Config("config.yml", path_config) |
|
|