litagin's picture
init
2916d61
raw
history blame
12.8 kB
import os
import warnings
from pathlib import Path
from typing import Optional, Union
import gradio as gr
import numpy as np
import torch
from gradio.processing_utils import convert_to_16_bit_wav
import utils
from infer import get_net_g, infer
from models import SynthesizerTrn
from models_jp_extra import SynthesizerTrn as SynthesizerTrnJPExtra
from .constants import (
DEFAULT_ASSIST_TEXT_WEIGHT,
DEFAULT_LENGTH,
DEFAULT_LINE_SPLIT,
DEFAULT_NOISE,
DEFAULT_NOISEW,
DEFAULT_SDP_RATIO,
DEFAULT_SPLIT_INTERVAL,
DEFAULT_STYLE,
DEFAULT_STYLE_WEIGHT,
)
from .log import logger
def adjust_voice(fs, wave, pitch_scale, intonation_scale):
if pitch_scale == 1.0 and intonation_scale == 1.0:
# 初期値の場合は、音質劣化を避けるためにそのまま返す
return fs, wave
try:
import pyworld
except ImportError:
raise ImportError(
"pyworld is not installed. Please install it by `pip install pyworld`"
)
# pyworldでf0を加工して合成
# pyworldよりもよいのがあるかもしれないが……
wave = wave.astype(np.double)
f0, t = pyworld.harvest(wave, fs)
# 質が高そうだしとりあえずharvestにしておく
sp = pyworld.cheaptrick(wave, f0, t, fs)
ap = pyworld.d4c(wave, f0, t, fs)
non_zero_f0 = [f for f in f0 if f != 0]
f0_mean = sum(non_zero_f0) / len(non_zero_f0)
for i, f in enumerate(f0):
if f == 0:
continue
f0[i] = pitch_scale * f0_mean + intonation_scale * (f - f0_mean)
wave = pyworld.synthesize(f0, sp, ap, fs)
return fs, wave
class Model:
def __init__(
self, model_path: Path, config_path: Path, style_vec_path: Path, device: str
):
self.model_path: Path = model_path
self.config_path: Path = config_path
self.style_vec_path: Path = style_vec_path
self.device: str = device
self.hps: utils.HParams = utils.get_hparams_from_file(self.config_path)
self.spk2id: dict[str, int] = self.hps.data.spk2id
self.id2spk: dict[int, str] = {v: k for k, v in self.spk2id.items()}
self.num_styles: int = self.hps.data.num_styles
if hasattr(self.hps.data, "style2id"):
self.style2id: dict[str, int] = self.hps.data.style2id
else:
self.style2id: dict[str, int] = {str(i): i for i in range(self.num_styles)}
if len(self.style2id) != self.num_styles:
raise ValueError(
f"Number of styles ({self.num_styles}) does not match the number of style2id ({len(self.style2id)})"
)
self.style_vectors: np.ndarray = np.load(self.style_vec_path)
if self.style_vectors.shape[0] != self.num_styles:
raise ValueError(
f"The number of styles ({self.num_styles}) does not match the number of style vectors ({self.style_vectors.shape[0]})"
)
self.net_g: Union[SynthesizerTrn, SynthesizerTrnJPExtra, None] = None
def load_net_g(self):
self.net_g = get_net_g(
model_path=str(self.model_path),
version=self.hps.version,
device=self.device,
hps=self.hps,
)
def get_style_vector(self, style_id: int, weight: float = 1.0) -> np.ndarray:
mean = self.style_vectors[0]
style_vec = self.style_vectors[style_id]
style_vec = mean + (style_vec - mean) * weight
return style_vec
def get_style_vector_from_audio(
self, audio_path: str, weight: float = 1.0
) -> np.ndarray:
from style_gen import get_style_vector
xvec = get_style_vector(audio_path)
mean = self.style_vectors[0]
xvec = mean + (xvec - mean) * weight
return xvec
def infer(
self,
text: str,
language: str = "JP",
sid: int = 0,
reference_audio_path: Optional[str] = None,
sdp_ratio: float = DEFAULT_SDP_RATIO,
noise: float = DEFAULT_NOISE,
noisew: float = DEFAULT_NOISEW,
length: float = DEFAULT_LENGTH,
line_split: bool = DEFAULT_LINE_SPLIT,
split_interval: float = DEFAULT_SPLIT_INTERVAL,
assist_text: Optional[str] = None,
assist_text_weight: float = DEFAULT_ASSIST_TEXT_WEIGHT,
use_assist_text: bool = False,
style: str = DEFAULT_STYLE,
style_weight: float = DEFAULT_STYLE_WEIGHT,
given_tone: Optional[list[int]] = None,
pitch_scale: float = 1.0,
intonation_scale: float = 1.0,
ignore_unknown: bool = False,
) -> tuple[int, np.ndarray]:
logger.info(f"Start generating audio data from text:\n{text}")
if language != "JP" and self.hps.version.endswith("JP-Extra"):
raise ValueError(
"The model is trained with JP-Extra, but the language is not JP"
)
if reference_audio_path == "":
reference_audio_path = None
if assist_text == "" or not use_assist_text:
assist_text = None
if self.net_g is None:
self.load_net_g()
if reference_audio_path is None:
style_id = self.style2id[style]
style_vector = self.get_style_vector(style_id, style_weight)
else:
style_vector = self.get_style_vector_from_audio(
reference_audio_path, style_weight
)
if not line_split:
with torch.no_grad():
audio = infer(
text=text,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=sid,
language=language,
hps=self.hps,
net_g=self.net_g,
device=self.device,
assist_text=assist_text,
assist_text_weight=assist_text_weight,
style_vec=style_vector,
given_tone=given_tone,
ignore_unknown=ignore_unknown,
)
else:
texts = text.split("\n")
texts = [t for t in texts if t != ""]
audios = []
with torch.no_grad():
for i, t in enumerate(texts):
audios.append(
infer(
text=t,
sdp_ratio=sdp_ratio,
noise_scale=noise,
noise_scale_w=noisew,
length_scale=length,
sid=sid,
language=language,
hps=self.hps,
net_g=self.net_g,
device=self.device,
assist_text=assist_text,
assist_text_weight=assist_text_weight,
style_vec=style_vector,
ignore_unknown=ignore_unknown,
)
)
if i != len(texts) - 1:
audios.append(np.zeros(int(44100 * split_interval)))
audio = np.concatenate(audios)
logger.info("Audio data generated successfully")
if not (pitch_scale == 1.0 and intonation_scale == 1.0):
_, audio = adjust_voice(
fs=self.hps.data.sampling_rate,
wave=audio,
pitch_scale=pitch_scale,
intonation_scale=intonation_scale,
)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
audio = convert_to_16_bit_wav(audio)
return (self.hps.data.sampling_rate, audio)
class ModelHolder:
def __init__(self, root_dir: Path, device: str):
self.root_dir: Path = root_dir
self.device: str = device
self.model_files_dict: dict[str, list[Path]] = {}
self.current_model: Optional[Model] = None
self.model_names: list[str] = []
self.models: list[Model] = []
self.refresh()
def refresh(self):
self.model_files_dict = {}
self.model_names = []
self.current_model = None
model_dirs = [d for d in self.root_dir.iterdir() if d.is_dir()]
for model_dir in model_dirs:
model_files = [
f
for f in model_dir.iterdir()
if f.suffix in [".pth", ".pt", ".safetensors"]
]
if len(model_files) == 0:
logger.warning(f"No model files found in {model_dir}, so skip it")
continue
config_path = model_dir / "config.json"
if not config_path.exists():
logger.warning(
f"Config file {config_path} not found, so skip {model_dir}"
)
continue
self.model_files_dict[model_dir.name] = model_files
self.model_names.append(model_dir.name)
def models_info(self):
if hasattr(self, "_models_info"):
return self._models_info
result = []
for name, files in self.model_files_dict.items():
# Get styles
config_path = self.root_dir / name / "config.json"
hps = utils.get_hparams_from_file(config_path)
style2id: dict[str, int] = hps.data.style2id
styles = list(style2id.keys())
result.append(
{
"name": name,
"files": [str(f) for f in files],
"styles": styles,
}
)
self._models_info = result
return result
def load_model(self, model_name: str, model_path_str: str):
model_path = Path(model_path_str)
if model_name not in self.model_files_dict:
raise ValueError(f"Model `{model_name}` is not found")
if model_path not in self.model_files_dict[model_name]:
raise ValueError(f"Model file `{model_path}` is not found")
if self.current_model is None or self.current_model.model_path != model_path:
self.current_model = Model(
model_path=model_path,
config_path=self.root_dir / model_name / "config.json",
style_vec_path=self.root_dir / model_name / "style_vectors.npy",
device=self.device,
)
return self.current_model
def load_model_gr(
self, model_name: str, model_path_str: str
) -> tuple[gr.Dropdown, gr.Button, gr.Dropdown]:
model_path = Path(model_path_str)
if model_name not in self.model_files_dict:
raise ValueError(f"Model `{model_name}` is not found")
if model_path not in self.model_files_dict[model_name]:
raise ValueError(f"Model file `{model_path}` is not found")
if (
self.current_model is not None
and self.current_model.model_path == model_path
):
# Already loaded
speakers = list(self.current_model.spk2id.keys())
styles = list(self.current_model.style2id.keys())
return (
gr.Dropdown(choices=styles, value=styles[0]),
gr.Button(interactive=True, value="音声合成"),
gr.Dropdown(choices=speakers, value=speakers[0]),
)
self.current_model = Model(
model_path=model_path,
config_path=self.root_dir / model_name / "config.json",
style_vec_path=self.root_dir / model_name / "style_vectors.npy",
device=self.device,
)
speakers = list(self.current_model.spk2id.keys())
styles = list(self.current_model.style2id.keys())
return (
gr.Dropdown(choices=styles, value=styles[0]),
gr.Button(interactive=True, value="音声合成"),
gr.Dropdown(choices=speakers, value=speakers[0]),
)
def update_model_files_gr(self, model_name: str) -> gr.Dropdown:
model_files = self.model_files_dict[model_name]
return gr.Dropdown(choices=model_files, value=model_files[0])
def update_model_names_gr(self) -> tuple[gr.Dropdown, gr.Dropdown, gr.Button]:
self.refresh()
initial_model_name = self.model_names[0]
initial_model_files = self.model_files_dict[initial_model_name]
return (
gr.Dropdown(choices=self.model_names, value=initial_model_name),
gr.Dropdown(choices=initial_model_files, value=initial_model_files[0]),
gr.Button(interactive=False), # For tts_button
)