Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -38,22 +38,23 @@ h3 {
|
|
38 |
# ------- use model stunting V5 -------
|
39 |
# -------------------------------------
|
40 |
|
41 |
-
text_pipeline = pipeline(
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
)
|
|
|
47 |
# -------------------------------------
|
48 |
# ------- use model stunting V6 -------
|
49 |
# -------------------------------------
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
@spaces.GPU
|
59 |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
|
@@ -71,72 +72,72 @@ def stream_chat(message: str, history: list, temperature: float, max_new_tokens:
|
|
71 |
# -------------------------------------
|
72 |
|
73 |
# Ubah ke format prompt-style string
|
74 |
-
conversation_text = ""
|
75 |
-
for turn in conversation:
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
terminators = [
|
86 |
-
|
87 |
-
|
88 |
-
]
|
89 |
|
90 |
# Hasil dari pipeline akan berupa list dengan dictionary berisi text
|
91 |
-
outputs = text_pipeline(
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
)
|
101 |
|
102 |
# 4. Ekstrak teks hasil dan stream per kalimat
|
103 |
-
generated_text = outputs[0].get("generated_text", "")
|
104 |
-
streamed_text = generated_text[len(conversation_text):].strip() # Hilangkan prompt awal
|
105 |
|
106 |
-
buffer = ""
|
107 |
-
for part in streamed_text.split(". "):
|
108 |
-
|
109 |
-
|
110 |
|
111 |
# -------------------------------------
|
112 |
# ------- use model stunting V6 -------
|
113 |
# -------------------------------------
|
114 |
|
115 |
-
|
116 |
-
|
117 |
|
118 |
-
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
|
141 |
|
142 |
|
|
|
38 |
# ------- use model stunting V5 -------
|
39 |
# -------------------------------------
|
40 |
|
41 |
+
# text_pipeline = pipeline(
|
42 |
+
# "text-generation",
|
43 |
+
# model=MODEL_ID,
|
44 |
+
# model_kwargs={"torch_dtype": torch.bfloat16},
|
45 |
+
# device_map="auto",
|
46 |
+
# )
|
47 |
+
|
48 |
# -------------------------------------
|
49 |
# ------- use model stunting V6 -------
|
50 |
# -------------------------------------
|
51 |
|
52 |
+
model = AutoModelForCausalLM.from_pretrained(
|
53 |
+
MODEL_ID,
|
54 |
+
torch_dtype=torch.bfloat16,
|
55 |
+
device_map="auto",
|
56 |
+
)
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
58 |
|
59 |
@spaces.GPU
|
60 |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):
|
|
|
72 |
# -------------------------------------
|
73 |
|
74 |
# Ubah ke format prompt-style string
|
75 |
+
# conversation_text = ""
|
76 |
+
# for turn in conversation:
|
77 |
+
# role = turn["role"]
|
78 |
+
# content = turn["content"]
|
79 |
+
# if role == "system":
|
80 |
+
# conversation_text += f"[SYSTEM]: {content}\n"
|
81 |
+
# elif role == "user":
|
82 |
+
# conversation_text += f"[USER]: {content}\n"
|
83 |
+
# elif role == "assistant":
|
84 |
+
# conversation_text += f"[ASSISTANT]: {content}\n"
|
85 |
|
86 |
+
# terminators = [
|
87 |
+
# text_pipeline.tokenizer.eos_token_id,
|
88 |
+
# text_pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
89 |
+
# ]
|
90 |
|
91 |
# Hasil dari pipeline akan berupa list dengan dictionary berisi text
|
92 |
+
# outputs = text_pipeline(
|
93 |
+
# conversation_text,
|
94 |
+
# max_new_tokens=max_new_tokens,
|
95 |
+
# eos_token_id=terminators,
|
96 |
+
# do_sample=True,
|
97 |
+
# temperature=temperature,
|
98 |
+
# top_p=top_p,
|
99 |
+
# top_k=top_k,
|
100 |
+
# repetition_penalty=penalty
|
101 |
+
# )
|
102 |
|
103 |
# 4. Ekstrak teks hasil dan stream per kalimat
|
104 |
+
# generated_text = outputs[0].get("generated_text", "")
|
105 |
+
# streamed_text = generated_text[len(conversation_text):].strip() # Hilangkan prompt awal
|
106 |
|
107 |
+
# buffer = ""
|
108 |
+
# for part in streamed_text.split(". "):
|
109 |
+
# buffer += part.strip() + ". "
|
110 |
+
# yield buffer
|
111 |
|
112 |
# -------------------------------------
|
113 |
# ------- use model stunting V6 -------
|
114 |
# -------------------------------------
|
115 |
|
116 |
+
input_ids = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
117 |
+
inputs = tokenizer(input_ids, return_tensors="pt").to(0) #gpu 0, cpu 1
|
118 |
|
119 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=60., skip_prompt=True, skip_special_tokens=True)
|
120 |
|
121 |
+
generate_kwargs = dict(
|
122 |
+
inputs,
|
123 |
+
streamer=streamer,
|
124 |
+
top_k=top_k,
|
125 |
+
top_p=top_p,
|
126 |
+
repetition_penalty=penalty,
|
127 |
+
max_new_tokens=max_new_tokens,
|
128 |
+
do_sample=True,
|
129 |
+
temperature=temperature,
|
130 |
+
pad_token_id=128000,
|
131 |
+
eos_token_id=[128001,128008,128009],
|
132 |
+
)
|
133 |
|
134 |
+
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
135 |
+
thread.start()
|
136 |
|
137 |
+
buffer = ""
|
138 |
+
for new_text in streamer:
|
139 |
+
buffer += new_text
|
140 |
+
yield buffer
|
141 |
|
142 |
|
143 |
|