kodetr commited on
Commit
9b262a2
·
verified ·
1 Parent(s): d46745a

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +27 -4
src/streamlit_app.py CHANGED
@@ -115,6 +115,20 @@ def build_cnn_model(input_length, num_classes=3, num_words=10000, embedding_dim=
115
  model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
116
  return model
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
119
  #----------------------------------------------------------------------------------------------------
120
  # Sidebar
@@ -168,17 +182,26 @@ elif choose == "CNN":
168
 
169
  # Upload file
170
  training_file = st.file_uploader("Upload Data Training (.txt)", accept_multiple_files=True)
 
 
 
 
 
 
171
  real_files = st.file_uploader("Upload Data Real (.txt)", accept_multiple_files=True)
172
 
 
 
 
173
  # Parameter model
174
  epochs = st.number_input("Jumlah Epoch", min_value=1, value=2000)
175
  batch_size = st.number_input("Ukuran Batch", min_value=1, value=32)
176
-
177
  if st.button("Proses Data"):
178
- if training_file and real_files:
179
  # Memproses data training
180
  try:
181
- data_train, labels_train, bandwidth_train = load_data(training_file)
182
  if len(data_train) == 0:
183
  st.error("Data training tidak valid atau kosong!")
184
  st.stop()
@@ -263,7 +286,7 @@ elif choose == "CNN":
263
 
264
  # Memproses data real
265
  data_real, labels_real, bandwidth_real = [], [], []
266
- for file in real_files:
267
  d, lbl, bw = load_data(file)
268
  data_real.extend(d)
269
  labels_real.extend(lbl)
 
115
  model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
116
  return model
117
 
118
+ def extract_text_from_file(file):
119
+
120
+ '''Extract text from uploaded file'''
121
+
122
+ # read text file
123
+ if file.type == "text/plain":
124
+ # To convert to a string based IO:
125
+ stringio = StringIO(file.getvalue().decode("cp1252"))
126
+
127
+ # To read file as string:
128
+ file_text = stringio.read()
129
+
130
+ return file_text, None
131
+
132
 
133
  #----------------------------------------------------------------------------------------------------
134
  # Sidebar
 
182
 
183
  # Upload file
184
  training_file = st.file_uploader("Upload Data Training (.txt)", accept_multiple_files=True)
185
+
186
+ if uploaded_file is not None:
187
+ text_training_file, title_traning = extract_text_from_file(training_file)
188
+
189
+ # file_1 = st.sidebar.file_uploader('Upload Data Training (.txt)', type=['txt'],accept_multiple_files=False, key='file_1', label_visibility='hidden')
190
+
191
  real_files = st.file_uploader("Upload Data Real (.txt)", accept_multiple_files=True)
192
 
193
+ if real_files is not None:
194
+ text_real_files, title_real = extract_text_from_file(real_files)
195
+
196
  # Parameter model
197
  epochs = st.number_input("Jumlah Epoch", min_value=1, value=2000)
198
  batch_size = st.number_input("Ukuran Batch", min_value=1, value=32)
199
+
200
  if st.button("Proses Data"):
201
+ if text_training_file and text_real_files:
202
  # Memproses data training
203
  try:
204
+ data_train, labels_train, bandwidth_train = load_data(text_training_file)
205
  if len(data_train) == 0:
206
  st.error("Data training tidak valid atau kosong!")
207
  st.stop()
 
286
 
287
  # Memproses data real
288
  data_real, labels_real, bandwidth_real = [], [], []
289
+ for file in text_real_files:
290
  d, lbl, bw = load_data(file)
291
  data_real.extend(d)
292
  labels_real.extend(lbl)