kozak-vaclav's picture
Update app.py
8e20a50 verified
raw
history blame
2.3 kB
import gradio as gr
import tensorflow as tf
import librosa
import numpy as np
from huggingface_hub import hf_hub_download
# Mel Spectrogram parameters
n_fft = 512 # FFT window length
hop_length = 160 # number of samples between successive frames
n_mels = 80 # Number of Mel bands
fmin = 0.0 # Minimum frequency
fmax = 8000.0 # Maximum frequency
sampling_rate = 16000
def extract_mel_spectrogram(audio) -> np.ndarray:
spectrogram = librosa.feature.melspectrogram(y=audio, sr=sampling_rate, hop_length=hop_length,
n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax, power=2.0)
spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
#spectrogram = np.expand_dims(spectrogram, axis=-1) # Adding channel dimension for the model
return spectrogram
# Download model from Hugging Face Hub
model_path = hf_hub_download(repo_id="kobrasoft/kobraspeech-rnn-cs", filename="kobraspeech.17-40.19.keras")
model = tf.keras.models.load_model(model_path)
def decode_batch_predictions(pred):
input_len = np.ones(pred.shape[0]) * pred.shape[1]
# Use greedy search. For complex tasks, you can use beam search
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]
# Iterate over the results and get back the text
output_text = []
for result in results:
result = label_to_string(result)
output_text.append(result)
return output_text
def transcribe(audio_path):
# Load audio
audio, _ = librosa.load(audio_path, sr=sampling_rate)
# Extract features
features = extract_mel_spectrogram(audio)
# Model expects batch dimension
features = np.expand_dims(features, axis=0)
# Predict
prediction = model.predict(features)
# Assuming you have a method to decode the prediction into text
transcription = decode_batch_predictions(prediction)
return transcription[0]
# Create Gradio interface
iface = gr.Interface(
fn=transcribe,
inputs=gr.inputs.Audio(source="microphone", type="filepath"),
outputs="text",
title="Kobraspeech RNN ASR demo (cs)",
description="Upload an audio file or record your voice to get the transcription."
)
if __name__ == "__main__":
iface.launch()