Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
from transformers import Wav2Vec2Processor, TFWav2Vec2Model | |
import librosa | |
# Load the model and processor | |
processor = Wav2Vec2Processor.from_pretrained("openai/whisper-tiny") | |
model = TFWav2Vec2Model.from_pretrained("kobrasoft/kobraspeech-rnn-cs") | |
def transcribe(audio): | |
# Load audio | |
audio, rate = librosa.load(audio, sr=16000) | |
# Process audio | |
inputs = processor(audio, sampling_rate=rate, return_tensors="tf", padding="longest") | |
logits = model(inputs.input_values).logits | |
# Decode the logits | |
predicted_ids = tf.argmax(logits, axis=-1) | |
transcription = processor.batch_decode(predicted_ids)[0] | |
return transcription | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.inputs.Audio(source="microphone", type="filepath"), | |
outputs="text", | |
title="ASR Model Demo", | |
description="Upload an audio file or record your voice to get the transcription." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |