Upload 3 files
Browse files- Dockerfile +24 -0
- app.py +108 -0
- requirements.txt +5 -0
Dockerfile
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as the base image
|
2 |
+
FROM python:3.9-slim
|
3 |
+
|
4 |
+
# Set the working directory within the container
|
5 |
+
WORKDIR /app
|
6 |
+
|
7 |
+
# Copy the requirements.txt file into the container
|
8 |
+
COPY ./requirements.txt /app/requirements.txt
|
9 |
+
|
10 |
+
# Install the Python dependencies
|
11 |
+
RUN pip install -r /app/requirements.txt
|
12 |
+
|
13 |
+
# Copy the Gradio application code into the container
|
14 |
+
COPY ./app.py /app/app.py
|
15 |
+
|
16 |
+
# Download NLTK resources
|
17 |
+
RUN python -m nltk.downloader stopwords
|
18 |
+
RUN python -m nltk.downloader wordnet
|
19 |
+
|
20 |
+
# Expose port 7860 to access the Gradio interface
|
21 |
+
EXPOSE 7860
|
22 |
+
|
23 |
+
# Command to run the Gradio app
|
24 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app.py
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1SKjRNc67_9TZPKUGhtfiYMfcpZuMh6s0
|
8 |
+
"""
|
9 |
+
|
10 |
+
# %pip install gradio transformers -q
|
11 |
+
# %pip install nltk
|
12 |
+
|
13 |
+
# Import the key libraries
|
14 |
+
import gradio as gr
|
15 |
+
import torch
|
16 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
17 |
+
from scipy.special import softmax
|
18 |
+
import nltk
|
19 |
+
import re
|
20 |
+
from nltk.corpus import stopwords
|
21 |
+
from nltk.stem import WordNetLemmatizer
|
22 |
+
|
23 |
+
# Download NLTK resources (if not already downloaded)
|
24 |
+
nltk.download('stopwords')
|
25 |
+
nltk.download('wordnet')
|
26 |
+
|
27 |
+
# Load the tokenizer and model from Hugging Face
|
28 |
+
model_path = "rasmodev/Covid-19_Sentiment_Analysis_RoBERTa_Model"
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
30 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
31 |
+
|
32 |
+
# Preprocess text (username and link placeholders, and text preprocessing)
|
33 |
+
def preprocess(text):
|
34 |
+
# Convert text to lowercase
|
35 |
+
text = text.lower()
|
36 |
+
|
37 |
+
# Remove special characters, numbers, and extra whitespaces
|
38 |
+
text = re.sub(r'[^a-zA-Z\s]', '', text)
|
39 |
+
|
40 |
+
# Remove stopwords (common words that don't carry much meaning)
|
41 |
+
stop_words = set(stopwords.words('english'))
|
42 |
+
words = text.split() # Split text into words
|
43 |
+
words = [word for word in words if word not in stop_words]
|
44 |
+
|
45 |
+
# Lemmatize words to their base form
|
46 |
+
lemmatizer = WordNetLemmatizer()
|
47 |
+
words = [lemmatizer.lemmatize(word) for word in words]
|
48 |
+
|
49 |
+
# Rejoin the preprocessed words into a single string
|
50 |
+
processed_text = ' '.join(words)
|
51 |
+
|
52 |
+
# Process placeholders
|
53 |
+
new_text = []
|
54 |
+
for t in processed_text.split(" "):
|
55 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
56 |
+
t = 'http' if t.startswith('http') else t
|
57 |
+
new_text.append(t)
|
58 |
+
|
59 |
+
return " ".join(new_text)
|
60 |
+
|
61 |
+
# Perform sentiment analysis
|
62 |
+
def sentiment_analysis(text):
|
63 |
+
text = preprocess(text)
|
64 |
+
|
65 |
+
# Tokenize input text
|
66 |
+
inputs = tokenizer(text, return_tensors='pt')
|
67 |
+
|
68 |
+
# Forward pass through the model
|
69 |
+
with torch.no_grad():
|
70 |
+
outputs = model(**inputs)
|
71 |
+
|
72 |
+
# Get predicted probabilities
|
73 |
+
scores_ = outputs.logits[0].detach().numpy()
|
74 |
+
scores_ = softmax(scores_)
|
75 |
+
|
76 |
+
# Define labels and corresponding colors
|
77 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
78 |
+
colors = ['red', 'yellow', 'green']
|
79 |
+
font_colors = ['white', 'black', 'white']
|
80 |
+
|
81 |
+
# Find the label with the highest percentage
|
82 |
+
max_label = labels[scores_.argmax()]
|
83 |
+
max_percentage = scores_.max() * 100
|
84 |
+
|
85 |
+
# Create HTML for the label with the specified style
|
86 |
+
label_html = f'<div style="display: flex; justify-content: center;"><button style="text-align: center; font-size: 16px; padding: 10px; border-radius: 15px; background-color: {colors[labels.index(max_label)]}; color: {font_colors[labels.index(max_label)]};">{max_label}({max_percentage:.2f}%)</button></div>'
|
87 |
+
|
88 |
+
return label_html
|
89 |
+
|
90 |
+
# Create a Gradio interface
|
91 |
+
interface = gr.Interface(
|
92 |
+
fn=sentiment_analysis,
|
93 |
+
inputs=gr.Textbox(placeholder="Write your tweet here..."),
|
94 |
+
outputs=gr.HTML(),
|
95 |
+
title="COVID-19 Sentiment Analysis App",
|
96 |
+
description="This App Analyzes the sentiment of COVID-19 related tweets. Negative: Indicates a negative sentiment, Neutral: Indicates a neutral sentiment, Positive: Indicates a positive sentiment.",
|
97 |
+
theme="default",
|
98 |
+
layout="horizontal",
|
99 |
+
examples=[
|
100 |
+
["This vaccine is terrible!"],
|
101 |
+
["I don't have a strong opinion about this vaccines."],
|
102 |
+
["The Vaccine is Good I have had no issues!"]
|
103 |
+
]
|
104 |
+
)
|
105 |
+
|
106 |
+
# Launch the Gradio app
|
107 |
+
interface.launch()
|
108 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.44.2
|
2 |
+
torch==2.0.1
|
3 |
+
transformers==4.33.1
|
4 |
+
nltk==3.8.1
|
5 |
+
scipy==1.11.2
|