Spaces:
Running
Running
# ------------------------------------------------------------------------ | |
# Modified from OFA (https://github.com/OFA-Sys/OFA) | |
# Copyright 2022 The OFA-Sys Team. | |
# All rights reserved. | |
# This source code is licensed under the Apache 2.0 license | |
# found in the LICENSE file in the root directory. | |
# ------------------------------------------------------------------------ | |
# Modifications Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
""" | |
PolyFormer | |
""" | |
from typing import Optional | |
import logging | |
import torch | |
import torch.nn as nn | |
from fairseq import utils | |
from fairseq.models import register_model, register_model_architecture | |
from fairseq.modules.transformer_sentence_encoder import init_bert_params | |
from .unify_transformer import TransformerModel | |
logger = logging.getLogger(__name__) | |
class PolyFormerModel(TransformerModel): | |
__jit_unused_properties__ = ["supported_targets"] | |
def __init__(self, args, encoder, decoder): | |
super().__init__(args, encoder, decoder) | |
# We follow BERT's random weight initialization | |
self.apply(init_bert_params) | |
self.classification_heads = nn.ModuleDict() | |
if hasattr(self.encoder, "dictionary"): | |
self.eos: int = self.encoder.dictionary.eos() | |
def add_args(parser): | |
super(PolyFormerModel, PolyFormerModel).add_args(parser) | |
parser.add_argument( | |
"--pooler-dropout", | |
type=float, | |
metavar="D", | |
help="dropout probability in the masked_lm pooler layers", | |
) | |
parser.add_argument( | |
"--pooler-classifier", | |
type=str, | |
choices=['mlp', 'linear'], | |
help="type of pooler classifier", | |
) | |
parser.add_argument( | |
"--pooler-activation-fn", | |
choices=utils.get_available_activation_fns(), | |
help="activation function to use for pooler layer", | |
) | |
parser.add_argument( | |
"--spectral-norm-classification-head", | |
action="store_true", | |
help="Apply spectral normalization on the classification head", | |
) | |
def supported_targets(self): | |
return {"self"} | |
def forward( | |
self, | |
src_tokens, | |
src_lengths, | |
att_masks, | |
prev_output_tokens_11, | |
prev_output_tokens_12, | |
prev_output_tokens_21, | |
prev_output_tokens_22, | |
delta_x1, | |
delta_y1, | |
delta_x2, | |
delta_y2, | |
patch_images: Optional[torch.Tensor] = None, | |
patch_masks: Optional[torch.Tensor] = None, | |
code_masks: Optional[torch.Tensor] = None, | |
sample_patch_num: Optional[int] = None, | |
features_only: bool = False, | |
classification_head_name: Optional[str] = None, | |
token_embeddings: Optional[torch.Tensor] = None, | |
return_all_hiddens: bool = False, | |
alignment_layer: Optional[int] = None, | |
alignment_heads: Optional[int] = None, | |
): | |
if classification_head_name is not None: | |
features_only = True | |
encoder_out = self.encoder( | |
src_tokens, | |
src_lengths=src_lengths, | |
att_masks=att_masks, | |
patch_images=patch_images, | |
patch_masks=patch_masks, | |
token_embeddings=token_embeddings, | |
return_all_hiddens=return_all_hiddens, | |
sample_patch_num=sample_patch_num | |
) | |
x_cls, x_reg, extra = self.decoder( | |
prev_output_tokens_11, | |
prev_output_tokens_12, | |
prev_output_tokens_21, | |
prev_output_tokens_22, | |
delta_x1, | |
delta_y1, | |
delta_x2, | |
delta_y2, | |
code_masks=code_masks, | |
encoder_out=encoder_out, | |
features_only=features_only, | |
alignment_layer=alignment_layer, | |
alignment_heads=alignment_heads, | |
src_lengths=src_lengths, | |
return_all_hiddens=return_all_hiddens, | |
) | |
return x_cls, x_reg, extra | |
def upgrade_state_dict_named(self, state_dict, name): | |
pass | |
def polyformer_l_architecture(args): | |
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 1024) | |
args.encoder_layers = getattr(args, "encoder_layers", 12) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16) | |
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True) | |
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True) | |
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) | |
args.decoder_ffn_embed_dim = getattr( | |
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim | |
) | |
args.decoder_layers = getattr(args, "decoder_layers", 12) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16) | |
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True) | |
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True) | |
args.attention_dropout = getattr(args, "attention_dropout", 0.0) | |
args.relu_dropout = getattr(args, "relu_dropout", 0.0) | |
args.dropout = getattr(args, "dropout", 0.0) | |
args.max_target_positions = getattr(args, "max_target_positions", 1024) | |
args.max_source_positions = getattr(args, "max_source_positions", 1024) | |
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) | |
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) | |
args.share_decoder_input_output_embed = getattr( | |
args, "share_decoder_input_output_embed", True | |
) | |
args.share_all_embeddings = getattr(args, "share_all_embeddings", True) | |
args.decoder_output_dim = getattr( | |
args, "decoder_output_dim", args.decoder_embed_dim | |
) | |
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) | |
args.no_scale_embedding = getattr(args, "no_scale_embedding", True) | |
args.layernorm_embedding = getattr(args, "layernorm_embedding", True) | |
args.activation_fn = getattr(args, "activation_fn", "gelu") | |
args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") | |
args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) | |
args.pooler_classifier = getattr(args, "pooler_classifier", "mlp") | |
args.resnet_drop_path_rate = getattr(args, "resnet_drop_path_rate", 0.0) | |
args.encoder_drop_path_rate = getattr(args, "encoder_drop_path_rate", 0.0) | |
args.decoder_drop_path_rate = getattr(args, "decoder_drop_path_rate", 0.0) | |
args.vis_encoder_type = getattr(args, "vis_encoder_type", "swin-large") | |
args.out_index = getattr(args, "out_index", 3) | |
args.token_bucket_size = getattr(args, "token_bucket_size", 256) | |
args.image_bucket_size = getattr(args, "image_bucket_size", 42) | |
args.freeze_encoder_embedding = getattr(args, "freeze_encoder_embedding", False) | |
args.freeze_decoder_embedding = getattr(args, "freeze_decoder_embedding", False) | |
args.add_type_embedding = getattr(args, "add_type_embedding", True) | |
args.attn_scale_factor = getattr(args, "attn_scale_factor", 2) | |
args.code_image_size = getattr(args, "code_image_size", 128) | |
args.patch_layernorm_embedding = getattr(args, "patch_layernorm_embedding", True) | |
args.code_layernorm_embedding = getattr(args, "code_layernorm_embedding", True) | |
args.entangle_position_embedding = getattr(args, "entangle_position_embedding", False) | |
args.disable_entangle = getattr(args, "disable_entangle", False) | |
args.sync_bn = getattr(args, "sync_bn", False) | |
args.scale_attn = getattr(args, "scale_attn", False) | |
args.scale_fc = getattr(args, "scale_fc", False) | |
args.scale_heads = getattr(args, "scale_heads", False) | |
args.scale_resids = getattr(args, "scale_resids", False) | |
def polyformer_b_architecture(args): | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768) | |
args.out_index = getattr(args, "out_index", 3) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 768) | |
args.encoder_layers = getattr(args, "encoder_layers", 6) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12) | |
args.decoder_layers = getattr(args, "decoder_layers", 6) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12) | |
args.vis_encoder_type = getattr(args, "vis_encoder_type", "swin-base") | |
polyformer_l_architecture(args) |