Spaces:
Running
Running
from typing import Optional | |
import torch | |
from torch import Tensor | |
from examples.simultaneous_translation.utils.functions import ( | |
exclusive_cumprod, | |
prob_check, | |
moving_sum, | |
) | |
def expected_alignment_from_p_choose( | |
p_choose: Tensor, | |
padding_mask: Optional[Tensor] = None, | |
eps: float = 1e-6 | |
): | |
""" | |
Calculating expected alignment for from stepwise probability | |
Reference: | |
Online and Linear-Time Attention by Enforcing Monotonic Alignments | |
https://arxiv.org/pdf/1704.00784.pdf | |
q_ij = (1 − p_{ij−1})q_{ij−1} + a+{i−1j} | |
a_ij = p_ij q_ij | |
Parallel solution: | |
ai = p_i * cumprod(1 − pi) * cumsum(a_i / cumprod(1 − pi)) | |
============================================================ | |
Expected input size | |
p_choose: bsz, tgt_len, src_len | |
""" | |
prob_check(p_choose) | |
# p_choose: bsz, tgt_len, src_len | |
bsz, tgt_len, src_len = p_choose.size() | |
dtype = p_choose.dtype | |
p_choose = p_choose.float() | |
if padding_mask is not None: | |
p_choose = p_choose.masked_fill(padding_mask.unsqueeze(1), 0.0) | |
# cumprod_1mp : bsz, tgt_len, src_len | |
cumprod_1mp = exclusive_cumprod(1 - p_choose, dim=2, eps=eps) | |
cumprod_1mp_clamp = torch.clamp(cumprod_1mp, eps, 1.0) | |
alpha_0 = p_choose.new_zeros([bsz, 1, src_len]) | |
alpha_0[:, :, 0] = 1.0 | |
previous_alpha = [alpha_0] | |
for i in range(tgt_len): | |
# p_choose: bsz , tgt_len, src_len | |
# cumprod_1mp_clamp : bsz, tgt_len, src_len | |
# previous_alpha[i]: bsz, 1, src_len | |
# alpha_i: bsz, src_len | |
alpha_i = ( | |
p_choose[:, i] | |
* cumprod_1mp[:, i] | |
* torch.cumsum( | |
previous_alpha[i][:, 0] / cumprod_1mp_clamp[:, i], dim=1 | |
) | |
).clamp(0, 1.0) | |
previous_alpha.append(alpha_i.unsqueeze(1)) | |
# alpha: bsz * num_heads, tgt_len, src_len | |
alpha = torch.cat(previous_alpha[1:], dim=1) | |
# Mix precision to prevent overflow for fp16 | |
alpha = alpha.type(dtype) | |
prob_check(alpha) | |
return alpha | |
def expected_soft_attention( | |
alpha: Tensor, | |
soft_energy: Tensor, | |
padding_mask: Optional[Tensor] = None, | |
chunk_size: Optional[int] = None, | |
eps: float = 1e-10 | |
): | |
""" | |
Function to compute expected soft attention for | |
monotonic infinite lookback attention from | |
expected alignment and soft energy. | |
Reference: | |
Monotonic Chunkwise Attention | |
https://arxiv.org/abs/1712.05382 | |
Monotonic Infinite Lookback Attention for Simultaneous Machine Translation | |
https://arxiv.org/abs/1906.05218 | |
alpha: bsz, tgt_len, src_len | |
soft_energy: bsz, tgt_len, src_len | |
padding_mask: bsz, src_len | |
left_padding: bool | |
""" | |
if padding_mask is not None: | |
alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0.0) | |
soft_energy = soft_energy.masked_fill( | |
padding_mask.unsqueeze(1), -float("inf") | |
) | |
prob_check(alpha) | |
dtype = alpha.dtype | |
alpha = alpha.float() | |
soft_energy = soft_energy.float() | |
soft_energy = soft_energy - soft_energy.max(dim=2, keepdim=True)[0] | |
exp_soft_energy = torch.exp(soft_energy) + eps | |
if chunk_size is not None: | |
# Chunkwise | |
beta = ( | |
exp_soft_energy | |
* moving_sum( | |
alpha / (eps + moving_sum(exp_soft_energy, chunk_size, 1)), | |
1, chunk_size | |
) | |
) | |
else: | |
# Infinite lookback | |
# Notice that infinite lookback is a special case of chunkwise | |
# where chunksize = inf | |
inner_items = alpha / (eps + torch.cumsum(exp_soft_energy, dim=2)) | |
beta = ( | |
exp_soft_energy | |
* torch.cumsum(inner_items.flip(dims=[2]), dim=2) | |
.flip(dims=[2]) | |
) | |
if padding_mask is not None: | |
beta = beta.masked_fill( | |
padding_mask.unsqueeze(1).to(torch.bool), 0.0) | |
# Mix precision to prevent overflow for fp16 | |
beta = beta.type(dtype) | |
beta = beta.clamp(0, 1) | |
prob_check(beta) | |
return beta | |
def mass_preservation( | |
alpha: Tensor, | |
padding_mask: Optional[Tensor] = None, | |
left_padding: bool = False | |
): | |
""" | |
Function to compute the mass perservation for alpha. | |
This means that the residual weights of alpha will be assigned | |
to the last token. | |
Reference: | |
Monotonic Infinite Lookback Attention for Simultaneous Machine Translation | |
https://arxiv.org/abs/1906.05218 | |
alpha: bsz, tgt_len, src_len | |
padding_mask: bsz, src_len | |
left_padding: bool | |
""" | |
prob_check(alpha) | |
if padding_mask is not None: | |
if not left_padding: | |
assert not padding_mask[:, 0].any(), ( | |
"Find padding on the beginning of the sequence." | |
) | |
alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0.0) | |
if left_padding or padding_mask is None: | |
residuals = 1 - alpha[:, :, :-1].sum(dim=-1).clamp(0, 1) | |
alpha[:, :, -1] = residuals | |
else: | |
# right padding | |
_, tgt_len, src_len = alpha.size() | |
residuals = 1 - alpha.sum(dim=-1, keepdim=True).clamp(0, 1) | |
src_lens = src_len - padding_mask.sum(dim=1, keepdim=True) | |
src_lens = src_lens.expand(-1, tgt_len).contiguous() | |
# add back the last value | |
residuals += alpha.gather(2, src_lens.unsqueeze(2) - 1) | |
alpha = alpha.scatter(2, src_lens.unsqueeze(2) - 1, residuals) | |
prob_check(alpha) | |
return alpha | |