Spaces:
Running
Running
# ------------------------------------------------------------------------ | |
# Modified from OFA (https://github.com/OFA-Sys/OFA) | |
# Copyright 2022 The OFA-Sys Team. | |
# All rights reserved. | |
# This source code is licensed under the Apache 2.0 license | |
# found in the LICENSE file in the root directory. | |
# ------------------------------------------------------------------------ | |
# Modifications Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
from io import BytesIO | |
import logging | |
import warnings | |
import numpy as np | |
import torch | |
import base64 | |
import utils.transforms as T | |
import math | |
from PIL import Image, ImageFile | |
from data import data_utils | |
from data.base_dataset import BaseDataset | |
from bert.tokenization_bert import BertTokenizer | |
from data.poly_utils import string_to_polygons, downsample_polygons, polygons_to_string, points_to_token_string | |
import cv2 | |
ImageFile.LOAD_TRUNCATED_IMAGES = True | |
ImageFile.MAX_IMAGE_PIXELS = None | |
Image.MAX_IMAGE_PIXELS = None | |
logger = logging.getLogger(__name__) | |
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning) | |
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) | |
class RefcocoDataset(BaseDataset): | |
def __init__( | |
self, | |
split, | |
dataset, | |
bpe, | |
src_dict, | |
tgt_dict=None, | |
max_src_length=80, | |
max_tgt_length=30, | |
patch_image_size=512, | |
imagenet_default_mean_and_std=False, | |
num_bins=1000, | |
max_image_size=512 | |
): | |
super().__init__(split, dataset, bpe, src_dict, tgt_dict) | |
self.max_src_length = max_src_length | |
self.max_tgt_length = max_tgt_length | |
self.patch_image_size = patch_image_size | |
self.num_bins = num_bins | |
if imagenet_default_mean_and_std: | |
mean = IMAGENET_DEFAULT_MEAN | |
std = IMAGENET_DEFAULT_STD | |
else: | |
mean = [0.5, 0.5, 0.5] | |
std = [0.5, 0.5, 0.5] | |
# for positioning | |
self.positioning_transform = T.Compose([ | |
T.RandomResize([patch_image_size], max_size=patch_image_size), | |
T.ToTensor(), | |
T.Normalize(mean=mean, std=std, max_image_size=max_image_size) | |
]) | |
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
def __getitem__(self, index): | |
data = self.dataset[index] | |
if len(data) == 7: | |
uniq_id, base64_str, seg64_str, text, poly_original, region_coord, poly_interpolated = data | |
train = True | |
else: | |
uniq_id, base64_str, seg64_str, text, poly, region_coord = data | |
train = False | |
# load image and segmentation labels | |
image = Image.open(BytesIO(base64.urlsafe_b64decode(base64_str))).convert("RGB") | |
label = Image.open(BytesIO(base64.urlsafe_b64decode(seg64_str))) | |
label = np.asarray(label) | |
label = cv2.resize(label, [self.patch_image_size, self.patch_image_size], interpolation=cv2.INTER_NEAREST) | |
w, h = image.size | |
patch_image = self.positioning_transform(image, target=None) | |
resize_h = self.patch_image_size | |
resize_w = self.patch_image_size | |
patch_mask = torch.tensor([True]) | |
if train: | |
prob = np.random.uniform() | |
if prob < 0.5: | |
polygons_interpolated = string_to_polygons(poly_interpolated) | |
ds_rate = np.random.randint(25, 41) | |
polygons_augmented = downsample_polygons(polygons_interpolated, ds_rate) | |
poly = polygons_to_string(polygons_augmented) | |
else: | |
poly = poly_original | |
polygons = string_to_polygons(poly) | |
polygons_scaled = [] | |
for polygon in polygons: | |
n_point = len(polygon) // 2 | |
scale = np.concatenate([np.array([w, h]) for _ in range(n_point)], 0) | |
polygon = polygon / scale | |
polygon = polygon.reshape(n_point, 2) | |
polygons_scaled.append(polygon) | |
x0, y0, x1, y1 = region_coord.strip().split(',') | |
region_points = [float(x0), float(y0), float(x1), float(y1)] | |
region = np.array(region_points) | |
region_points = region_points / np.array([w, h, w, h]) # scaled to [0,1] | |
region_points = torch.tensor(region_points.reshape(2, 2)) | |
quant_box = region_points * (self.num_bins - 1) | |
quant_box11 = [[math.floor(p[0]), math.floor(p[1])] for p in quant_box] | |
quant_box21 = [[math.ceil(p[0]), math.floor(p[1])] for p in quant_box] | |
quant_box12 = [[math.floor(p[0]), math.ceil(p[1])] for p in quant_box] | |
quant_box22 = [[math.ceil(p[0]), math.ceil(p[1])] for p in quant_box] | |
quant_poly = [poly * (self.num_bins - 1) for poly in polygons_scaled] | |
quant_poly11 = [[[math.floor(p[0]), math.floor(p[1])] for p in poly] for poly in quant_poly] | |
quant_poly21 = [[[math.ceil(p[0]), math.floor(p[1])] for p in poly] for poly in quant_poly] | |
quant_poly12 = [[[math.floor(p[0]), math.ceil(p[1])] for p in poly] for poly in quant_poly] | |
quant_poly22 = [[[math.ceil(p[0]), math.ceil(p[1])] for p in poly] for poly in quant_poly] | |
region_coord11, _ = points_to_token_string(quant_box11, quant_poly11) | |
region_coord21, _ = points_to_token_string(quant_box21, quant_poly21) | |
region_coord12, _ = points_to_token_string(quant_box12, quant_poly12) | |
region_coord22, token_type = points_to_token_string(quant_box22, quant_poly22) | |
# compute bilinear interpolation coefficient | |
delta_x1 = [0] + [p[0] - math.floor(p[0]) for p in quant_box] # [0] for bos token | |
for polygon in quant_poly: | |
delta = [poly_point[0] - math.floor(poly_point[0]) for poly_point in polygon] | |
delta_x1.extend(delta) | |
delta_x1.extend([0]) # for separator token | |
delta_x1 = delta_x1[:-1] # there is no separator token in the end | |
delta_x1 = torch.tensor(delta_x1) | |
delta_x2 = 1 - delta_x1 | |
delta_y1 = [0] + [p[1] - math.floor(p[1]) for p in quant_box] # [0] for bos token | |
for polygon in quant_poly: | |
delta = [poly_point[1] - math.floor(poly_point[1]) for poly_point in polygon] | |
delta_y1.extend(delta) | |
delta_y1.extend([0]) # for separator token | |
delta_y1 = delta_y1[:-1] # there is no separator token in the end | |
delta_y1 = torch.tensor(delta_y1) | |
delta_y2 = 1 - delta_y1 | |
token_type.append(2) # 2 for eos token | |
src_caption = self.pre_caption(text, self.max_src_length) | |
prompt = ' which region does the text " {} " describe?'.format(src_caption) | |
# tgt for input | |
tgt_item11 = self.encode_text(region_coord11, use_bpe=False) | |
tgt_item12 = self.encode_text(region_coord12, use_bpe=False) | |
tgt_item21 = self.encode_text(region_coord21, use_bpe=False) | |
tgt_item22 = self.encode_text(region_coord22, use_bpe=False) | |
# tgt for output | |
target_item = region_points | |
for poly in polygons_scaled: | |
target_item = torch.cat([target_item, torch.tensor(poly), torch.tensor([[0, 0]])], dim=0) # [0, 0] is padding token for separator and eos | |
#target_item = torch.cat([tgt_item, self.eos_item]) | |
prev_output_item11 = torch.cat([self.bos_item, tgt_item11]) | |
prev_output_item12 = torch.cat([self.bos_item, tgt_item12]) | |
prev_output_item21 = torch.cat([self.bos_item, tgt_item21]) | |
prev_output_item22 = torch.cat([self.bos_item, tgt_item22]) | |
example = { | |
"id": uniq_id, | |
"source": prompt, | |
"patch_image": patch_image, | |
"patch_mask": patch_mask, | |
"target": target_item, | |
"prev_output_tokens_11": prev_output_item11, | |
"prev_output_tokens_12": prev_output_item12, | |
"prev_output_tokens_21": prev_output_item21, | |
"prev_output_tokens_22": prev_output_item22, | |
"delta_x1": delta_x1, | |
"delta_y1": delta_y1, | |
"delta_x2": delta_x2, | |
"delta_y2": delta_y2, | |
"w_resize_ratio": torch.tensor(resize_w / w), | |
"h_resize_ratio": torch.tensor(resize_h / h), | |
"region_coord": torch.tensor(region), | |
"token_type": torch.tensor(token_type), | |
"w": torch.tensor(w), | |
"h": torch.tensor(h), | |
"label": label, | |
"n_poly": len(polygons), | |
"text": src_caption | |
} | |
return example | |
def collate(self, samples, pad_idx, eos_idx): | |
if len(samples) == 0: | |
return {} | |
def merge(key, padding_item): | |
return data_utils.collate_tokens( | |
[s[key] for s in samples], | |
padding_item, | |
eos_idx=eos_idx, | |
) | |
id = np.array([s["id"] for s in samples]) | |
captions = [s["source"] for s in samples] | |
tokenized = self.tokenizer.batch_encode_plus(captions, padding="longest", return_tensors="pt") | |
src_tokens = tokenized["input_ids"] | |
att_masks = tokenized["attention_mask"] | |
src_lengths = torch.LongTensor(att_masks.ne(0).long().sum()) | |
patch_images = torch.stack([sample['patch_image'] for sample in samples], dim=0) | |
patch_masks = torch.cat([sample['patch_mask'] for sample in samples]) | |
w_resize_ratios = torch.stack([s["w_resize_ratio"] for s in samples], dim=0) | |
h_resize_ratios = torch.stack([s["h_resize_ratio"] for s in samples], dim=0) | |
delta_x1 = merge("delta_x1", 0) | |
delta_y1 = merge("delta_y1", 0) | |
delta_x2 = merge("delta_x2", 1) | |
delta_y2 = merge("delta_y2", 1) | |
region_coords = torch.stack([s['region_coord'] for s in samples], dim=0) | |
target = merge("target", pad_idx) | |
tgt_lengths = torch.LongTensor([s["target"].shape[0] for s in samples]) | |
ntokens = tgt_lengths.sum().item() | |
prev_output_tokens_11 = merge("prev_output_tokens_11", pad_idx) | |
prev_output_tokens_12 = merge("prev_output_tokens_12", pad_idx) | |
prev_output_tokens_21 = merge("prev_output_tokens_21", pad_idx) | |
prev_output_tokens_22 = merge("prev_output_tokens_22", pad_idx) | |
token_type = merge("token_type", -1) | |
w = torch.stack([s["w"] for s in samples], dim=0) | |
h = torch.stack([s["h"] for s in samples], dim=0) | |
n_poly = [s['n_poly'] for s in samples] | |
labels = np.stack([sample['label'] for sample in samples], 0) | |
text = [s["text"] for s in samples] | |
batch = { | |
"id": id, | |
"nsentences": len(samples), | |
"ntokens": ntokens, | |
"net_input": { | |
"src_tokens": src_tokens, | |
"src_lengths": src_lengths, | |
"att_masks": att_masks, | |
"patch_images": patch_images, | |
"patch_masks": patch_masks, | |
"prev_output_tokens_11": prev_output_tokens_11, | |
"prev_output_tokens_12": prev_output_tokens_12, | |
"prev_output_tokens_21": prev_output_tokens_21, | |
"prev_output_tokens_22": prev_output_tokens_22, | |
"delta_x1": delta_x1, | |
"delta_y1": delta_y1, | |
"delta_x2": delta_x2, | |
"delta_y2": delta_y2 | |
}, | |
"target": target, | |
"w_resize_ratios": w_resize_ratios, | |
"h_resize_ratios": h_resize_ratios, | |
"region_coords": region_coords, | |
"label": labels, | |
"token_type": token_type, | |
"w": w, | |
"h": h, | |
"n_poly": n_poly, | |
"text": text | |
} | |
return batch | |
def collater(self, samples, pad_to_length=None): | |
"""Merge a list of samples to form a mini-batch. | |
Args: | |
samples (List[dict]): samples to collate | |
Returns: | |
dict: a mini-batch containing the data of the task | |
""" | |
return self.collate(samples, pad_idx=self.pad, eos_idx=self.eos) |