PolyFormer / bert /modeling_bert.py
jiang
init commit
650c5f6
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BERT model. """
import logging
import math
import os
import warnings
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from .activations import gelu, gelu_new, swish
from .configuration_bert import BertConfig
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
from .modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
logger = logging.getLogger(__name__)
_TOKENIZER_FOR_DOC = "BertTokenizer"
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"bert-base-uncased",
"bert-large-uncased",
"bert-base-cased",
"bert-large-cased",
"bert-base-multilingual-uncased",
"bert-base-multilingual-cased",
"bert-base-chinese",
"bert-base-german-cased",
"bert-large-uncased-whole-word-masking",
"bert-large-cased-whole-word-masking",
"bert-large-uncased-whole-word-masking-finetuned-squad",
"bert-large-cased-whole-word-masking-finetuned-squad",
"bert-base-cased-finetuned-mrpc",
"bert-base-german-dbmdz-cased",
"bert-base-german-dbmdz-uncased",
"cl-tohoku/bert-base-japanese",
"cl-tohoku/bert-base-japanese-whole-word-masking",
"cl-tohoku/bert-base-japanese-char",
"cl-tohoku/bert-base-japanese-char-whole-word-masking",
"TurkuNLP/bert-base-finnish-cased-v1",
"TurkuNLP/bert-base-finnish-uncased-v1",
"wietsedv/bert-base-dutch-cased",
# See all BERT models at https://huggingface.co/models?filter=bert
]
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
""" Load tf checkpoints in a pytorch model.
"""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info("Loading TF weight {} with shape {}".format(name, shape))
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info("Skipping {}".format("/".join(name)))
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info("Skipping {}".format("/".join(name)))
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
assert pointer.shape == array.shape
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info("Initialize PyTorch weight {}".format(name))
pointer.data = torch.from_numpy(array)
return model
def mish(x):
return x * torch.tanh(nn.functional.softplus(x))
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new, "mish": mish}
BertLayerNorm = torch.nn.LayerNorm
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand(input_shape)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
if encoder_hidden_states is not None:
mixed_key_layer = self.key(encoder_hidden_states)
mixed_value_layer = self.value(encoder_hidden_states)
attention_mask = encoder_attention_mask
else:
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
):
self_outputs = self.self(
hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = BertAttention(config)
self.is_decoder = config.is_decoder
if self.is_decoder:
self.crossattention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
):
self_attention_outputs = self.attention(
hidden_states, attention_mask, head_mask, output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
if self.is_decoder and encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:] # add cross attentions if we output attention weights
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + outputs
return outputs
class BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=False,
output_hidden_states=False,
):
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if getattr(self.config, "gradient_checkpointing", False):
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer_module),
hidden_states,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = (hidden_states,)
if output_hidden_states:
outputs = outputs + (all_hidden_states,)
if output_attentions:
outputs = outputs + (all_attentions,)
return outputs # last-layer hidden state, (all hidden states), (all attentions)
class BertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class BertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class BertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class BertOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
class BertPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = BertLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class BertPreTrainedModel(PreTrainedModel):
""" An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = BertConfig
load_tf_weights = load_tf_weights_in_bert
base_model_prefix = "bert"
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, BertLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
BERT_START_DOCSTRING = r"""
This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
usage and behavior.
Parameters:
config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the configuration.
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""
BERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using :class:`transformers.BertTokenizer`.
See :func:`transformers.PreTrainedTokenizer.encode` and
:func:`transformers.PreTrainedTokenizer.__call__` for details.
`What are input IDs? <../glossary.html#input-ids>`__
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
Mask to avoid performing attention on padding token indices.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
`What are attention masks? <../glossary.html#attention-mask>`__
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
Segment token indices to indicate first and second portions of the inputs.
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
corresponds to a `sentence B` token
`What are token type IDs? <../glossary.html#token-type-ids>`_
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
Indices of positions of each input sequence tokens in the position embeddings.
Selected in the range ``[0, config.max_position_embeddings - 1]``.
`What are position IDs? <../glossary.html#position-ids>`_
head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
Mask to nullify selected heads of the self-attention modules.
Mask values selected in ``[0, 1]``:
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask
is used in the cross-attention if the model is configured as a decoder.
Mask values selected in ``[0, 1]``:
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
output_attentions (:obj:`bool`, `optional`, defaults to :obj:`None`):
If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
"""
@add_start_docstrings(
"The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
BERT_START_DOCSTRING,
)
class BertModel(BertPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well
as a decoder, in which case a layer of cross-attention is added between
the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the
:obj:`is_decoder` argument of the configuration set to :obj:`True`; an
:obj:`encoder_hidden_states` is expected as an input to the forward pass.
.. _`Attention is all you need`:
https://arxiv.org/abs/1706.03762
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = BertEmbeddings(config)
self.encoder = BertEncoder(config)
self.pooler = BertPooler(config)
self.init_weights()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
""" Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
See base class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
):
r"""
Return:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during pre-training.
This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
outputs = (sequence_output, pooled_output,) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions)
@add_start_docstrings(
"""Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and
a `next sentence prediction (classification)` head. """,
BERT_START_DOCSTRING,
)
class BertForPreTraining(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.cls = BertPreTrainingHeads(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
next_sentence_label=None,
output_attentions=None,
output_hidden_states=None,
**kwargs
):
r"""
labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`):
Labels for computing the masked language modeling loss.
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
in ``[0, ..., config.vocab_size]``
next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring)
Indices should be in ``[0, 1]``.
``0`` indicates sequence B is a continuation of sequence A,
``1`` indicates sequence B is a random sequence.
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False
continuation before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
>>> from transformers import BertTokenizer, BertForPreTraining
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForPreTraining.from_pretrained('bert-base-uncased')
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_scores, seq_relationship_scores = outputs[:2]
"""
if "masked_lm_labels" in kwargs:
warnings.warn(
"The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
DeprecationWarning,
)
labels = kwargs.pop("masked_lm_labels")
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
outputs = (prediction_scores, seq_relationship_score,) + outputs[
2:
] # add hidden states and attention if they are here
if labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
outputs = (total_loss,) + outputs
return outputs # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
@add_start_docstrings(
"""Bert Model with a `language modeling` head on top for CLM fine-tuning. """, BERT_START_DOCSTRING
)
class BertLMHeadModel(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
assert config.is_decoder, "If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True`."
self.bert = BertModel(config)
self.cls = BertOnlyMLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
**kwargs
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Labels for computing the left-to-right language modeling loss (next word prediction).
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
in ``[0, ..., config.vocab_size]``
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
ltr_lm_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Next token prediction loss.
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Example::
>>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
>>> config = BertConfig.from_pretrained("bert-base-cased")
>>> config.is_decoder = True
>>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
"""
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
ltr_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
outputs = (ltr_lm_loss,) + outputs
return outputs # (ltr_lm_loss), prediction_scores, (hidden_states), (attentions)
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING)
class BertForMaskedLM(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
assert (
not config.is_decoder
), "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for bi-directional self-attention."
self.bert = BertModel(config)
self.cls = BertOnlyMLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.cls.predictions.decoder
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions=None,
output_hidden_states=None,
**kwargs
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Labels for computing the masked language modeling loss.
Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
in ``[0, ..., config.vocab_size]``
kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
masked_lm_loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Masked language modeling loss.
prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
if "masked_lm_labels" in kwargs:
warnings.warn(
"The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
DeprecationWarning,
)
labels = kwargs.pop("masked_lm_labels")
assert "lm_labels" not in kwargs, "Use `BertWithLMHead` for autoregressive language modeling task."
assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
outputs = (prediction_scores,) + outputs[2:] # Add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
outputs = (masked_lm_loss,) + outputs
return outputs # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
effective_batch_size = input_shape[0]
# add a dummy token
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
dummy_token = torch.full(
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
)
input_ids = torch.cat([input_ids, dummy_token], dim=1)
return {"input_ids": input_ids, "attention_mask": attention_mask}
@add_start_docstrings(
"""Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING,
)
class BertForNextSentencePrediction(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.cls = BertOnlyNSPHead(config)
self.init_weights()
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
next_sentence_label=None,
output_attentions=None,
output_hidden_states=None,
):
r"""
next_sentence_label (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
Indices should be in ``[0, 1]``.
``0`` indicates sequence B is a continuation of sequence A,
``1`` indicates sequence B is a random sequence.
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`next_sentence_label` is provided):
Next sequence prediction (classification) loss.
seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
>>> from transformers import BertTokenizer, BertForNextSentencePrediction
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
>>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')
>>> loss, logits = model(**encoding, next_sentence_label=torch.LongTensor([1]))
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
"""
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
pooled_output = outputs[1]
seq_relationship_score = self.cls(pooled_output)
outputs = (seq_relationship_score,) + outputs[2:] # add hidden states and attention if they are here
if next_sentence_label is not None:
loss_fct = CrossEntropyLoss()
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
outputs = (next_sentence_loss,) + outputs
return outputs # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
@add_start_docstrings(
"""Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """,
BERT_START_DOCSTRING,
)
class BertForSequenceClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
Labels for computing the sequence classification/regression loss.
Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), logits, (hidden_states), (attentions)
@add_start_docstrings(
"""Bert Model with a multiple choice classification head on top (a linear layer on top of
the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
BERT_START_DOCSTRING,
)
class BertForMultipleChoice(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
self.init_weights()
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)"))
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
Labels for computing the multiple choice classification loss.
Indices should be in ``[0, ..., num_choices-1]`` where `num_choices` is the size of the second dimension
of the input tensors. (see `input_ids` above)
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided):
Classification loss.
classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
`num_choices` is the second dimension of the input tensors. (see `input_ids` above).
Classification scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
outputs = (loss,) + outputs
return outputs # (loss), reshaped_logits, (hidden_states), (attentions)
@add_start_docstrings(
"""Bert Model with a token classification head on top (a linear layer on top of
the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
BERT_START_DOCSTRING,
)
class BertForTokenClassification(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
Labels for computing the token classification loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
Classification loss.
scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
Classification scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
if attention_mask is not None:
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
)
loss = loss_fct(active_logits, active_labels)
else:
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), scores, (hidden_states), (attentions)
@add_start_docstrings(
"""Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
BERT_START_DOCSTRING,
)
class BertForQuestionAnswering(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.bert = BertModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
start_positions=None,
end_positions=None,
output_attentions=None,
output_hidden_states=None,
):
r"""
start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`).
Position outside of the sequence are not taken into account for computing the loss.
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
Span-start scores (before SoftMax).
end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
Span-end scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
outputs = (start_logits, end_logits,) + outputs[2:]
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
outputs = (total_loss,) + outputs
return outputs # (loss), start_logits, end_logits, (hidden_states), (attentions)