Spaces:
Running
Running
import os | |
import torch | |
import numpy as np | |
from fairseq import utils,tasks | |
from utils.checkpoint_utils import load_model_ensemble_and_task | |
from models.polyformer import PolyFormerModel | |
import cv2 | |
import torch | |
import numpy as np | |
from fairseq import utils, tasks | |
from fairseq import checkpoint_utils | |
from utils.eval_utils import eval_step | |
from tasks.refcoco import RefcocoTask | |
from models.polyformer import PolyFormerModel | |
from PIL import Image | |
from torchvision import transforms | |
import cv2 | |
import gradio as gr | |
import math | |
from io import BytesIO | |
import base64 | |
import re | |
from demo import visual_grounding | |
title = "PolyFormer" | |
description = """<p style='text-align: center'> <a href='https://polyformer.github.io/' target='_blank'>Project Page</a> | <a href='https://arxiv.org/pdf/2302.07387.pdf' target='_blank'>Paper</a> | <a href='https://github.com/amazon-science/polygon-transformer' target='_blank'>Github Repo</a></p> | |
<p style='text-align: center'> Demo of PolyFormer for referring image segmentation and referring expression comprehension. Upload your own image or click any one of the examples, and write a description about a certain object. Then click \"Submit\" and wait for the result of grounding.</p> | |
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. | |
<br/> | |
<a href="https://huggingface.co/spaces/koajoel/PolyFormer?duplicate=true"> | |
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> | |
</p> | |
""" | |
examples = [['demo/bear.jpeg', 'a bear astronaut in the space'], | |
['demo/unicorn.jpeg', 'a unicorn doing computer vision research'], | |
['demo/pig.jpeg', 'a pig robot preparing a delicious meal'], | |
['demo/otta.png', 'a gentleman otter in a 19th century portrait'], | |
['demo/pikachu.jpeg', 'a pikachu fine-dining with a view to the Eiffel Tower'], | |
['demo/cabin.jpeg', 'a small cabin on top of a snowy mountain in the style of Disney art station'] | |
] | |
io = gr.Interface(fn=visual_grounding, inputs=[gr.inputs.Image(type='pil'), "textbox"], | |
outputs=[gr.outputs.Image(label="output", type='numpy'), gr.outputs.Image(label="predicted mask", type='numpy')], | |
title=title, description=description, article=article, examples=examples, | |
allow_flagging=False, allow_screenshot=False) | |
io.launch(cache_examples=True) | |
# io.launch() | |