PolyFormer / bert /tokenization_utils.py
jiang
init commit
650c5f6
raw
history blame
32.8 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization classes for python tokenizers.
For fast tokenizers (provided by HuggingFace's tokenizers library) see tokenization_utils_fast.py
"""
import itertools
import logging
import re
import unicodedata
from typing import Dict, List, Optional, Tuple, Union
from .file_utils import add_end_docstrings
from .tokenization_utils_base import (
ENCODE_KWARGS_DOCSTRING,
ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
AddedToken,
BatchEncoding,
EncodedInput,
EncodedInputPair,
PaddingStrategy,
PreTokenizedInput,
PreTokenizedInputPair,
PreTrainedTokenizerBase,
TensorType,
TextInput,
TextInputPair,
TruncationStrategy,
)
logger = logging.getLogger(__name__)
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
def _is_end_of_word(text):
"""Checks whether the last character in text is one of a punctuation, control or whitespace character."""
last_char = text[-1]
return bool(_is_control(last_char) | _is_punctuation(last_char) | _is_whitespace(last_char))
def _is_start_of_word(text):
"""Checks whether the first character in text is one of a punctuation, control or whitespace character."""
first_char = text[0]
return bool(_is_control(first_char) | _is_punctuation(first_char) | _is_whitespace(first_char))
class PreTrainedTokenizer(PreTrainedTokenizerBase):
""" Base class for all slow tokenizers.
Handle all the shared methods for tokenization and special tokens as well as methods
downloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
This class also contain the added tokens in a unified way on top of all tokenizers so we don't
have to handle the specific vocabulary augmentation methods of the various underlying
dictionary structures (BPE, sentencepiece...).
Class attributes (overridden by derived classes):
- ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file
required by the model, and as associated values, the filename for saving the associated file (string).
- ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys
being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the
`short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the
associated pretrained vocabulary file.
- ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained
models, and as associated values, the maximum length of the sequence inputs of this model, or None if the
model has no maximum input size.
- ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the
pretrained models, and as associated values, a dictionnary of specific arguments to pass to the
``__init__``method of the tokenizer class for this pretrained model when loading the tokenizer with the
``from_pretrained()`` method.
Args:
- ``model_max_length``: (`Optional`) int: the maximum length in number of tokens for the inputs to the transformer model.
When the tokenizer is loaded with `from_pretrained`, this will be set to the value stored for the associated
model in ``max_model_input_sizes`` (see above). If no value is provided, will default to VERY_LARGE_INTEGER (`int(1e30)`).
no associated max_length can be found in ``max_model_input_sizes``.
- ``padding_side``: (`Optional`) string: the side on which the model should have padding applied.
Should be selected between ['right', 'left']
- ``model_input_names``: (`Optional`) List[string]: the list of the forward pass inputs accepted by the
model ("token_type_ids", "attention_mask"...).
- ``bos_token``: (`Optional`) string: a beginning of sentence token.
Will be associated to ``self.bos_token`` and ``self.bos_token_id``
- ``eos_token``: (`Optional`) string: an end of sentence token.
Will be associated to ``self.eos_token`` and ``self.eos_token_id``
- ``unk_token``: (`Optional`) string: an unknown token.
Will be associated to ``self.unk_token`` and ``self.unk_token_id``
- ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence).
Will be associated to ``self.sep_token`` and ``self.sep_token_id``
- ``pad_token``: (`Optional`) string: a padding token.
Will be associated to ``self.pad_token`` and ``self.pad_token_id``
- ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence
leveraging self-attention along the full depth of the model).
Will be associated to ``self.cls_token`` and ``self.cls_token_id``
- ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language
modeling). Will be associated to ``self.mask_token`` and ``self.mask_token_id``
- ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens.
Adding all special tokens here ensure they won't be split by the tokenization process.
Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids``
.. automethod:: __call__
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
# Added tokens - We store this for both slow and fast tokenizers
# until the serialization of Fast tokenizers is updated
self.added_tokens_encoder: Dict[str, int] = {}
self.added_tokens_decoder: Dict[int, str] = {}
self.unique_no_split_tokens: List[str] = []
@property
def is_fast(self) -> bool:
return False
@property
def vocab_size(self) -> int:
""" Size of the base vocabulary (without the added tokens) """
raise NotImplementedError
def get_vocab(self):
""" Returns the vocabulary as a dict of {token: index} pairs. `tokenizer.get_vocab()[token]` is equivalent to `tokenizer.convert_tokens_to_ids(token)` when `token` is in the vocab. """
raise NotImplementedError()
def get_added_vocab(self) -> Dict[str, int]:
return self.added_tokens_encoder
def __len__(self):
""" Size of the full vocabulary with the added tokens """
return self.vocab_size + len(self.added_tokens_encoder)
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens=False) -> int:
"""
Add a list of new tokens to the tokenizer class. If the new tokens are not in the
vocabulary, they are added to it with indices starting from length of the current vocabulary.
Args:
new_tokens: string or list of string. Each string is a token to add. Tokens are only added if they are not
already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
Returns:
Number of tokens added to the vocabulary.
Examples::
# Let's see how to increase the vocabulary of Bert model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
print('We have added', num_added_toks, 'tokens')
model.resize_token_embeddings(len(tokenizer)) # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
"""
new_tokens = [str(tok) for tok in new_tokens]
tokens_to_add = []
for token in new_tokens:
assert isinstance(token, str)
if not special_tokens and self.init_kwargs.get("do_lower_case", False):
token = token.lower()
if (
token != self.unk_token
and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token)
and token not in tokens_to_add
):
tokens_to_add.append(token)
if self.verbose:
logger.info("Adding %s to the vocabulary", token)
added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(tokens_to_add))
added_tok_decoder = {v: k for k, v in added_tok_encoder.items()}
self.added_tokens_encoder.update(added_tok_encoder)
self.added_tokens_decoder.update(added_tok_decoder)
# Make sure we don't split on any special tokens (even they were already in the vocab before e.g. for Albert)
if special_tokens:
self.unique_no_split_tokens = list(set(self.unique_no_split_tokens).union(set(new_tokens)))
else:
# Or on the newly added tokens
self.unique_no_split_tokens = list(set(self.unique_no_split_tokens).union(set(tokens_to_add)))
return len(tokens_to_add)
def num_special_tokens_to_add(self, pair=False):
"""
Returns the number of added tokens when encoding a sequence with special tokens.
Note:
This encodes inputs and checks the number of added tokens, and is therefore not efficient. Do not put this
inside your training loop.
Args:
pair: Returns the number of added tokens in the case of a sequence pair if set to True, returns the
number of added tokens in the case of a single sequence if set to False.
Returns:
Number of tokens added to sequences
"""
token_ids_0 = []
token_ids_1 = []
return len(self.build_inputs_with_special_tokens(token_ids_0, token_ids_1 if pair else None))
def tokenize(self, text: TextInput, **kwargs):
""" Converts a string in a sequence of tokens (string), using the tokenizer.
Split in words for word-based vocabulary or sub-words for sub-word-based
vocabularies (BPE/SentencePieces/WordPieces).
Take care of added tokens.
Args:
text (:obj:`string`): The sequence to be encoded.
**kwargs (:obj: `dict`): Arguments passed to the model-specific `prepare_for_tokenization` preprocessing method.
"""
# Simple mapping string => AddedToken for special tokens with specific tokenization behaviors
all_special_tokens_extended = dict(
(str(t), t) for t in self.all_special_tokens_extended if isinstance(t, AddedToken)
)
text, kwargs = self.prepare_for_tokenization(text, **kwargs)
if kwargs:
logger.warning(f"Keyword arguments {kwargs} not recognized.")
# TODO: should this be in the base class?
if self.init_kwargs.get("do_lower_case", False):
# convert non-special tokens to lowercase
escaped_special_toks = [re.escape(s_tok) for s_tok in self.all_special_tokens]
pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text)
def split_on_token(tok, text):
result = []
tok_extended = all_special_tokens_extended.get(tok, None)
split_text = text.split(tok)
full_word = ""
for i, sub_text in enumerate(split_text):
# AddedToken can control whitespace stripping around them.
# We use them for GPT2 and Roberta to have different behavior depending on the special token
# Cf. https://github.com/huggingface/transformers/pull/2778
# and https://github.com/huggingface/transformers/issues/3788
if isinstance(tok_extended, AddedToken):
if tok_extended.single_word:
# Try to avoid splitting on token
if (
i < len(split_text) - 1
and not _is_end_of_word(sub_text)
and not _is_start_of_word(split_text[i + 1])
):
# Don't extract the special token
full_word += sub_text + tok
elif full_word:
full_word += sub_text
result += [full_word]
full_word = ""
continue
# Strip white spaces on the right
if tok_extended.rstrip and i > 0:
# A bit counter-intuitive but we strip the left of the string
# since tok_extended.rstrip means the special token is eating all white spaces on its right
sub_text = sub_text.lstrip()
# Strip white spaces on the left
if tok_extended.lstrip and i < len(split_text) - 1:
sub_text = sub_text.rstrip() # Opposite here
else:
# We strip left and right by default
if i < len(split_text) - 1:
sub_text = sub_text.rstrip()
if i > 0:
sub_text = sub_text.lstrip()
if i == 0 and not sub_text:
result += [tok]
elif i == len(split_text) - 1:
if sub_text:
result += [sub_text]
else:
pass
else:
if sub_text:
result += [sub_text]
result += [tok]
return result
def split_on_tokens(tok_list, text):
if not text.strip():
return []
if not tok_list:
return self._tokenize(text)
tokenized_text = []
text_list = [text]
for tok in tok_list:
tokenized_text = []
for sub_text in text_list:
if sub_text not in self.unique_no_split_tokens:
tokenized_text += split_on_token(tok, sub_text)
else:
tokenized_text += [sub_text]
text_list = tokenized_text
return list(
itertools.chain.from_iterable(
(
self._tokenize(token) if token not in self.unique_no_split_tokens else [token]
for token in tokenized_text
)
)
)
no_split_token = self.unique_no_split_tokens
tokenized_text = split_on_tokens(no_split_token, text)
return tokenized_text
def _tokenize(self, text, **kwargs):
""" Converts a string in a sequence of tokens (string), using the tokenizer.
Split in words for word-based vocabulary or sub-words for sub-word-based
vocabularies (BPE/SentencePieces/WordPieces).
Do NOT take care of added tokens.
"""
raise NotImplementedError
def convert_tokens_to_ids(self, tokens):
""" Converts a token string (or a sequence of tokens) in a single integer id
(or a sequence of ids), using the vocabulary.
"""
if tokens is None:
return None
if isinstance(tokens, str):
return self._convert_token_to_id_with_added_voc(tokens)
ids = []
for token in tokens:
ids.append(self._convert_token_to_id_with_added_voc(token))
return ids
def _convert_token_to_id_with_added_voc(self, token):
if token is None:
return None
if token in self.added_tokens_encoder:
return self.added_tokens_encoder[token]
return self._convert_token_to_id(token)
def _convert_token_to_id(self, token):
raise NotImplementedError
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput, EncodedInput],
text_pair: Optional[Union[TextInput, PreTokenizedInput, EncodedInput]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
is_pretokenized: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
def get_input_ids(text):
if isinstance(text, str):
tokens = self.tokenize(text, **kwargs)
return self.convert_tokens_to_ids(tokens)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
if is_pretokenized:
tokens = list(itertools.chain(*(self.tokenize(t, is_pretokenized=True, **kwargs) for t in text)))
return self.convert_tokens_to_ids(tokens)
else:
return self.convert_tokens_to_ids(text)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
return text
else:
if is_pretokenized:
raise ValueError(
f"Input {text} is not valid. Should be a string or a list/tuple of strings when `is_pretokenized=True`."
)
else:
raise ValueError(
f"Input {text} is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
first_ids = get_input_ids(text)
second_ids = get_input_ids(text_pair) if text_pair is not None else None
return self.prepare_for_model(
first_ids,
pair_ids=second_ids,
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
List[PreTokenizedInputPair],
List[EncodedInput],
List[EncodedInputPair],
],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
is_pretokenized: bool = False,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs
) -> BatchEncoding:
def get_input_ids(text):
if isinstance(text, str):
tokens = self.tokenize(text, **kwargs)
return self.convert_tokens_to_ids(tokens)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
if is_pretokenized:
tokens = list(itertools.chain(*(self.tokenize(t, is_pretokenized=True, **kwargs) for t in text)))
return self.convert_tokens_to_ids(tokens)
else:
return self.convert_tokens_to_ids(text)
elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
return text
else:
raise ValueError(
"Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
)
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers."
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
input_ids = []
for ids_or_pair_ids in batch_text_or_text_pairs:
if not isinstance(ids_or_pair_ids, (list, tuple)):
ids, pair_ids = ids_or_pair_ids, None
elif is_pretokenized and not isinstance(ids_or_pair_ids[0], (list, tuple)):
ids, pair_ids = ids_or_pair_ids, None
else:
ids, pair_ids = ids_or_pair_ids
first_ids = get_input_ids(ids)
second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
input_ids.append((first_ids, second_ids))
batch_outputs = self._batch_prepare_for_model(
input_ids,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def _batch_prepare_for_model(
self,
batch_ids_pairs: List[Union[PreTokenizedInputPair, Tuple[List[int], None]]],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
""" Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model.
It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens
Args:
batch_ids_pairs: list of tokenized input ids or input ids pairs
"""
batch_outputs = {}
for first_ids, second_ids in batch_ids_pairs:
outputs = self.prepare_for_model(
first_ids,
second_ids,
add_special_tokens=add_special_tokens,
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
truncation=truncation_strategy.value,
max_length=max_length,
stride=stride,
pad_to_multiple_of=None, # we pad in batch afterward
return_attention_mask=False, # we pad in batch afterward
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=None, # We convert the whole batch to tensors at the end
prepend_batch_axis=False,
verbose=verbose,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = self.pad(
batch_outputs,
padding=padding_strategy.value,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return batch_outputs
def prepare_for_tokenization(self, text: str, is_pretokenized=False, **kwargs) -> (str, dict):
""" Performs any necessary transformations before tokenization.
This method should pop the arguments from kwargs and return kwargs as well.
We test kwargs at the end of the encoding process to be sure all the arguments have been used.
"""
return (text, kwargs)
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer ``prepare_for_model`` method.
Args:
token_ids_0: list of ids (must not contain special tokens)
token_ids_1: Optional list of ids (must not contain special tokens), necessary when fetching sequence ids
for sequence pairs
already_has_special_tokens: (default False) Set to True if the token list is already formated with
special tokens for the model
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
return [0] * ((len(token_ids_1) if token_ids_1 else 0) + len(token_ids_0))
def convert_ids_to_tokens(
self, ids: Union[int, List[int]], skip_special_tokens: bool = False
) -> Union[str, List[str]]:
""" Converts a single index or a sequence of indices (integers) in a token "
(resp.) a sequence of tokens (str), using the vocabulary and added tokens.
Args:
skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False
"""
if isinstance(ids, int):
if ids in self.added_tokens_decoder:
return self.added_tokens_decoder[ids]
else:
return self._convert_id_to_token(ids)
tokens = []
for index in ids:
index = int(index)
if skip_special_tokens and index in self.all_special_ids:
continue
if index in self.added_tokens_decoder:
tokens.append(self.added_tokens_decoder[index])
else:
tokens.append(self._convert_id_to_token(index))
return tokens
def _convert_id_to_token(self, index: int) -> str:
raise NotImplementedError
def convert_tokens_to_string(self, tokens: List[str]) -> str:
""" Converts a sequence of tokens (string) in a single string.
The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids))
but we often want to remove sub-word tokenization artifacts at the same time.
"""
return " ".join(self.convert_ids_to_tokens(tokens))
def decode(
self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = True
) -> str:
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separatly for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
sub_texts = []
current_sub_text = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
current_sub_text = []
sub_texts.append(token)
else:
current_sub_text.append(token)
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
text = " ".join(sub_texts)
if clean_up_tokenization_spaces:
clean_text = self.clean_up_tokenization(text)
return clean_text
else:
return text
def save_vocabulary(self, save_directory) -> Tuple[str]:
""" Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens
and special token mappings.
Please use :func:`~transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full
Tokenizer state if you want to reload it using the :func:`~transformers.PreTrainedTokenizer.from_pretrained`
class method.
"""
raise NotImplementedError