Spaces:
Running
Running
import logging | |
import math | |
import torch | |
import torch.nn.functional as F | |
logger = logging.getLogger(__name__) | |
def swish(x): | |
return x * torch.sigmoid(x) | |
def _gelu_python(x): | |
""" Original Implementation of the gelu activation function in Google Bert repo when initially created. | |
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
This is now written in C in torch.nn.functional | |
Also see https://arxiv.org/abs/1606.08415 | |
""" | |
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
def gelu_new(x): | |
""" Implementation of the gelu activation function currently in Google Bert repo (identical to OpenAI GPT). | |
Also see https://arxiv.org/abs/1606.08415 | |
""" | |
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) | |
if torch.__version__ < "1.4.0": | |
gelu = _gelu_python | |
else: | |
gelu = F.gelu | |
def gelu_fast(x): | |
return 0.5 * x * (1.0 + torch.tanh(x * 0.7978845608 * (1.0 + 0.044715 * x * x))) | |
ACT2FN = { | |
"relu": F.relu, | |
"swish": swish, | |
"gelu": gelu, | |
"tanh": torch.tanh, | |
"gelu_new": gelu_new, | |
"gelu_fast": gelu_fast, | |
} | |
def get_activation(activation_string): | |
if activation_string in ACT2FN: | |
return ACT2FN[activation_string] | |
else: | |
raise KeyError("function {} not found in ACT2FN mapping {}".format(activation_string, list(ACT2FN.keys()))) | |