jiang
init commit
650c5f6
raw
history blame
21.9 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import json
import os
import random
import sys
from io import StringIO
import torch
import torch.nn.functional as F
from fairseq import options, utils
from fairseq.data import Dictionary
from fairseq.data.language_pair_dataset import collate
from fairseq.models import (
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqIncrementalDecoder,
)
from fairseq.models.fairseq_encoder import EncoderOut
from fairseq.tasks import LegacyFairseqTask
from fairseq_cli import generate, interactive, preprocess, train, validate
import fairseq.distributed.utils as distributed_utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
def dummy_dictionary(vocab_size, prefix="token_"):
d = Dictionary()
for i in range(vocab_size):
token = prefix + str(i)
d.add_symbol(token)
d.finalize(padding_factor=1) # don't add extra padding symbols
return d
def dummy_dataloader(
samples, padding_idx=1, eos_idx=2, batch_size=None,
):
if batch_size is None:
batch_size = len(samples)
# add any missing data to samples
for i, sample in enumerate(samples):
if "id" not in sample:
sample["id"] = i
# create dataloader
dataset = TestDataset(samples)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
collate_fn=(lambda samples: collate(samples, padding_idx, eos_idx)),
)
return iter(dataloader)
def sequence_generator_setup():
# construct dummy dictionary
d = dummy_dictionary(vocab_size=2)
eos = d.eos()
w1 = 4
w2 = 5
# construct source data
src_tokens = torch.LongTensor([[w1, w2, eos], [w1, w2, eos]])
src_lengths = torch.LongTensor([2, 2])
args = argparse.Namespace()
unk = 0.0
args.beam_probs = [
# step 0:
torch.FloatTensor(
[
# eos w1 w2
# sentence 1:
[0.0, unk, 0.9, 0.1], # beam 1
[0.0, unk, 0.9, 0.1], # beam 2
# sentence 2:
[0.0, unk, 0.7, 0.3],
[0.0, unk, 0.7, 0.3],
]
),
# step 1:
torch.FloatTensor(
[
# eos w1 w2 prefix
# sentence 1:
[1.0, unk, 0.0, 0.0], # w1: 0.9 (emit: w1 <eos>: 0.9*1.0)
[0.0, unk, 0.9, 0.1], # w2: 0.1
# sentence 2:
[0.25, unk, 0.35, 0.4], # w1: 0.7 (don't emit: w1 <eos>: 0.7*0.25)
[0.00, unk, 0.10, 0.9], # w2: 0.3
]
),
# step 2:
torch.FloatTensor(
[
# eos w1 w2 prefix
# sentence 1:
[0.0, unk, 0.1, 0.9], # w2 w1: 0.1*0.9
[
0.6,
unk,
0.2,
0.2,
], # w2 w2: 0.1*0.1 (emit: w2 w2 <eos>: 0.1*0.1*0.6)
# sentence 2:
[
0.60,
unk,
0.4,
0.00,
], # w1 w2: 0.7*0.4 (emit: w1 w2 <eos>: 0.7*0.4*0.6)
[0.01, unk, 0.0, 0.99], # w2 w2: 0.3*0.9
]
),
# step 3:
torch.FloatTensor(
[
# eos w1 w2 prefix
# sentence 1:
[
1.0,
unk,
0.0,
0.0,
], # w2 w1 w2: 0.1*0.9*0.9 (emit: w2 w1 w2 <eos>: 0.1*0.9*0.9*1.0)
[
1.0,
unk,
0.0,
0.0,
], # w2 w1 w1: 0.1*0.9*0.1 (emit: w2 w1 w1 <eos>: 0.1*0.9*0.1*1.0)
# sentence 2:
[
0.1,
unk,
0.5,
0.4,
], # w2 w2 w2: 0.3*0.9*0.99 (emit: w2 w2 w2 <eos>: 0.3*0.9*0.99*0.1)
[
1.0,
unk,
0.0,
0.0,
], # w1 w2 w1: 0.7*0.4*0.4 (emit: w1 w2 w1 <eos>: 0.7*0.4*0.4*1.0)
]
),
]
task = TestTranslationTask.setup_task(args, d, d)
model = task.build_model(args)
tgt_dict = task.target_dictionary
return tgt_dict, w1, w2, src_tokens, src_lengths, model
def create_dummy_data(data_dir, num_examples=100, maxlen=20, alignment=False):
def _create_dummy_data(filename):
data = torch.rand(num_examples * maxlen)
data = 97 + torch.floor(26 * data).int()
with open(os.path.join(data_dir, filename), "w") as h:
offset = 0
for _ in range(num_examples):
ex_len = random.randint(1, maxlen)
ex_str = " ".join(map(chr, data[offset : offset + ex_len]))
print(ex_str, file=h)
offset += ex_len
def _create_dummy_alignment_data(filename_src, filename_tgt, filename):
with open(os.path.join(data_dir, filename_src), "r") as src_f, open(
os.path.join(data_dir, filename_tgt), "r"
) as tgt_f, open(os.path.join(data_dir, filename), "w") as h:
for src, tgt in zip(src_f, tgt_f):
src_len = len(src.split())
tgt_len = len(tgt.split())
avg_len = (src_len + tgt_len) // 2
num_alignments = random.randint(avg_len // 2, 2 * avg_len)
src_indices = torch.floor(torch.rand(num_alignments) * src_len).int()
tgt_indices = torch.floor(torch.rand(num_alignments) * tgt_len).int()
ex_str = " ".join(
[
"{}-{}".format(src, tgt)
for src, tgt in zip(src_indices, tgt_indices)
]
)
print(ex_str, file=h)
_create_dummy_data("train.in")
_create_dummy_data("train.out")
_create_dummy_data("valid.in")
_create_dummy_data("valid.out")
_create_dummy_data("test.in")
_create_dummy_data("test.out")
if alignment:
_create_dummy_alignment_data("train.in", "train.out", "train.align")
_create_dummy_alignment_data("valid.in", "valid.out", "valid.align")
_create_dummy_alignment_data("test.in", "test.out", "test.align")
def preprocess_lm_data(data_dir):
preprocess_parser = options.get_preprocessing_parser()
preprocess_args = preprocess_parser.parse_args(
[
"--only-source",
"--trainpref",
os.path.join(data_dir, "train.out"),
"--validpref",
os.path.join(data_dir, "valid.out"),
"--testpref",
os.path.join(data_dir, "test.out"),
"--destdir",
data_dir,
]
)
preprocess.main(preprocess_args)
def preprocess_translation_data(data_dir, extra_flags=None):
preprocess_parser = options.get_preprocessing_parser()
preprocess_args = preprocess_parser.parse_args(
[
"--source-lang",
"in",
"--target-lang",
"out",
"--trainpref",
os.path.join(data_dir, "train"),
"--validpref",
os.path.join(data_dir, "valid"),
"--testpref",
os.path.join(data_dir, "test"),
"--thresholdtgt",
"0",
"--thresholdsrc",
"0",
"--destdir",
data_dir,
]
+ (extra_flags or []),
)
preprocess.main(preprocess_args)
def preprocess_summarization_data(data_dir, extra_flags=None):
preprocess_parser = options.get_preprocessing_parser()
preprocess_args = preprocess_parser.parse_args(
[
"--source-lang",
"in",
"--target-lang",
"out",
"--trainpref",
os.path.join(data_dir, "train"),
"--validpref",
os.path.join(data_dir, "valid"),
"--testpref",
os.path.join(data_dir, "test"),
"--thresholdtgt",
"0",
"--thresholdsrc",
"0",
"--joined-dictionary",
"--destdir",
data_dir,
]
+ (extra_flags or []),
)
preprocess.main(preprocess_args)
def create_laser_data_and_config_json(data_dir):
src_langs = ["de", "fr", "ru", "tr", "zh"]
tgt_langs = ["en", "es"]
config_json = {}
config_train_json = []
src_vocab = None
tgt_vocab = None
for src_lang in src_langs:
for tgt_lang in tgt_langs:
langpair_folder = f"{src_lang}-{tgt_lang}"
langpair_path = os.path.join(data_dir, langpair_folder)
os.mkdir(langpair_path)
create_dummy_data(langpair_path)
preprocess_translation_data(langpair_path, ["--dataset-impl", "cached"])
src_vocab = os.path.join(langpair_path, "dict.in.txt")
tgt_vocab = os.path.join(langpair_path, "dict.out.txt")
config_train_json.append(
{
"id": 0 if tgt_lang == "en" else 1,
"src": os.path.join(langpair_path, "train.in-out.in"),
"tgt": os.path.join(langpair_path, "train.in-out.out"),
}
)
config_json["src_vocab"] = src_vocab
config_json["tgt_vocab"] = tgt_vocab
config_json["train"] = config_train_json
with open(os.path.join(data_dir, "laserconfig.json"), "w") as config_file:
json.dump(config_json, config_file)
return config_file
def train_translation_model(
data_dir,
arch,
extra_flags=None,
task="translation",
run_validation=False,
lang_flags=None,
extra_valid_flags=None,
world_size=1,
):
if lang_flags is None:
lang_flags = [
"--source-lang",
"in",
"--target-lang",
"out",
]
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
task,
data_dir,
"--save-dir",
data_dir,
"--arch",
arch,
"--optimizer",
"nag",
"--lr",
"0.05",
"--max-tokens",
"500",
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
str(world_size),
"--num-workers",
"0",
]
+ lang_flags
+ (extra_flags or []),
)
cfg = convert_namespace_to_omegaconf(train_args)
distributed_utils.call_main(cfg, train.main)
if run_validation:
# test validation
validate_parser = options.get_validation_parser()
validate_args = options.parse_args_and_arch(
validate_parser,
[
"--task",
task,
data_dir,
"--path",
os.path.join(data_dir, "checkpoint_last.pt"),
"--valid-subset",
"valid",
"--max-tokens",
"500",
"--no-progress-bar",
"--num-workers",
"0",
]
+ lang_flags
+ (extra_valid_flags or []),
)
validate.main(validate_args)
def generate_main(data_dir, extra_flags=None, path=None):
if extra_flags is None:
extra_flags = [
"--print-alignment",
]
if path is None:
path = os.path.join(data_dir, "checkpoint_last.pt")
generate_parser = options.get_generation_parser()
generate_args = options.parse_args_and_arch(
generate_parser,
[
data_dir,
"--path",
path,
"--beam",
"3",
"--batch-size",
"64",
"--max-len-b",
"5",
"--gen-subset",
"valid",
"--no-progress-bar",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
# evaluate model in batch mode
generate.main(generate_args)
# evaluate model interactively
generate_args.buffer_size = 0
generate_args.input = "-"
generate_args.batch_size = None
orig_stdin = sys.stdin
sys.stdin = StringIO("h e l l o\n")
interactive.main(generate_args)
sys.stdin = orig_stdin
class TestDataset(torch.utils.data.Dataset):
def __init__(self, data):
super().__init__()
self.data = data
self.sizes = None
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return len(self.data)
class TestTranslationTask(LegacyFairseqTask):
def __init__(self, args, src_dict, tgt_dict, model):
super().__init__(args)
self.src_dict = src_dict
self.tgt_dict = tgt_dict
self.model = model
@classmethod
def setup_task(cls, args, src_dict=None, tgt_dict=None, model=None):
return cls(args, src_dict, tgt_dict, model)
def build_model(self, args):
return TestModel.build_model(args, self)
@property
def source_dictionary(self):
return self.src_dict
@property
def target_dictionary(self):
return self.tgt_dict
class TestModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, args, task):
encoder = TestEncoder(args, task.source_dictionary)
decoder = TestIncrementalDecoder(args, task.target_dictionary)
return cls(encoder, decoder)
class TestEncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
self.args = args
def forward(self, src_tokens, src_lengths=None, **kwargs):
return EncoderOut(
encoder_out=src_tokens,
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
def reorder_encoder_out(self, encoder_out, new_order):
return EncoderOut(
encoder_out=encoder_out.encoder_out.index_select(0, new_order),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
class TestIncrementalDecoder(FairseqIncrementalDecoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
assert hasattr(args, "beam_probs") or hasattr(args, "probs")
args.max_decoder_positions = getattr(args, "max_decoder_positions", 100)
self.args = args
def forward(self, prev_output_tokens, encoder_out=None, incremental_state=None):
if incremental_state is not None:
prev_output_tokens = prev_output_tokens[:, -1:]
bbsz = prev_output_tokens.size(0)
vocab = len(self.dictionary)
src_len = encoder_out.encoder_out.size(1)
tgt_len = prev_output_tokens.size(1)
# determine number of steps
if incremental_state is not None:
# cache step number
step = utils.get_incremental_state(self, incremental_state, "step")
if step is None:
step = 0
utils.set_incremental_state(self, incremental_state, "step", step + 1)
steps = [step]
else:
steps = list(range(tgt_len))
# define output in terms of raw probs
if hasattr(self.args, "probs"):
assert (
self.args.probs.dim() == 3
), "expected probs to have size bsz*steps*vocab"
probs = self.args.probs.index_select(1, torch.LongTensor(steps))
else:
probs = torch.FloatTensor(bbsz, len(steps), vocab).zero_()
for i, step in enumerate(steps):
# args.beam_probs gives the probability for every vocab element,
# starting with eos, then unknown, and then the rest of the vocab
if step < len(self.args.beam_probs):
probs[:, i, self.dictionary.eos() :] = self.args.beam_probs[step]
else:
probs[:, i, self.dictionary.eos()] = 1.0
# random attention
attn = torch.rand(bbsz, tgt_len, src_len)
dev = prev_output_tokens.device
return probs.to(dev), {"attn": [attn.to(dev)]}
def get_normalized_probs(self, net_output, log_probs, _):
# the decoder returns probabilities directly
probs = net_output[0]
if log_probs:
return probs.log()
else:
return probs
def max_positions(self):
return self.args.max_decoder_positions
class TestReshapingEncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
self.args = args
def forward(self, src_tokens, src_lengths=None, **kwargs):
b_sz, t_sz = src_tokens.shape
padding_needed = t_sz % 2
x = src_tokens
if padding_needed > 0:
padding_needed = 2 - padding_needed
x = F.pad(x, (0, padding_needed))
return EncoderOut(
encoder_out=x.view(b_sz, -1, 2),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
def reorder_encoder_out(self, encoder_out, new_order):
return EncoderOut(
encoder_out=encoder_out.encoder_out.index_select(0, new_order),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
class TestReshapingModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, args, task):
encoder = TestReshapingEncoder(args, task.source_dictionary)
decoder = TestIncrementalDecoder(args, task.target_dictionary)
return cls(encoder, decoder)
class TestAdditionalInputEncoder(FairseqEncoder):
def __init__(self, args, dictionary):
super().__init__(dictionary)
self.args = args
def forward(self, src_tokens, src_lengths=None, **kwargs):
assert "fancy_other_input" in kwargs
assert kwargs["fancy_other_input"] is not None
return EncoderOut(
encoder_out=src_tokens,
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
def reorder_encoder_out(self, encoder_out, new_order):
return EncoderOut(
encoder_out=encoder_out.encoder_out.index_select(0, new_order),
encoder_padding_mask=None,
encoder_embedding=None,
encoder_states=None,
src_tokens=None,
src_lengths=None,
)
class TestAdditionalInputModel(FairseqEncoderDecoderModel):
def __init__(self, encoder, decoder):
super().__init__(encoder, decoder)
@classmethod
def build_model(cls, args, task):
encoder = TestAdditionalInputEncoder(args, task.source_dictionary)
decoder = TestIncrementalDecoder(args, task.target_dictionary)
return cls(encoder, decoder)
def forward(self, src_tokens, src_lengths, prev_output_tokens, **kwargs):
encoder_out = self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)
decoder_out = self.decoder(
prev_output_tokens, encoder_out=encoder_out, **kwargs
)
return decoder_out
def train_language_model(
data_dir,
arch,
extra_flags=None,
run_validation=False,
extra_valid_flags=None,
task="language_modeling",
world_size=1,
):
train_parser = options.get_training_parser()
train_args = options.parse_args_and_arch(
train_parser,
[
"--task",
task,
data_dir,
"--arch",
arch,
"--optimizer",
"adam",
"--lr",
"0.0001",
"--max-tokens",
"500",
"--tokens-per-sample",
"500",
"--save-dir",
data_dir,
"--max-epoch",
"1",
"--no-progress-bar",
"--distributed-world-size",
str(world_size),
"--ddp-backend",
"no_c10d",
"--num-workers",
"0",
]
+ (extra_flags or []),
)
cfg = convert_namespace_to_omegaconf(train_args)
distributed_utils.call_main(cfg, train.main)
if run_validation:
# test validation
validate_parser = options.get_validation_parser()
validate_args = options.parse_args_and_arch(
validate_parser,
[
"--task",
task,
data_dir,
"--path",
os.path.join(data_dir, "checkpoint_last.pt"),
"--valid-subset",
"valid",
"--max-tokens",
"500",
"--no-progress-bar",
"--num-workers",
"0",
]
+ (extra_valid_flags or []),
)
validate.main(validate_args)