Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import tempfile | |
import unittest | |
import torch | |
from fairseq.data.dictionary import Dictionary | |
from fairseq.models.lstm import LSTMModel | |
from fairseq.tasks.fairseq_task import LegacyFairseqTask | |
DEFAULT_TEST_VOCAB_SIZE = 100 | |
class DummyTask(LegacyFairseqTask): | |
def __init__(self, args): | |
super().__init__(args) | |
self.dictionary = get_dummy_dictionary() | |
if getattr(self.args, "ctc", False): | |
self.dictionary.add_symbol("<ctc_blank>") | |
self.src_dict = self.dictionary | |
self.tgt_dict = self.dictionary | |
def source_dictionary(self): | |
return self.src_dict | |
def target_dictionary(self): | |
return self.dictionary | |
def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE): | |
dummy_dict = Dictionary() | |
# add dummy symbol to satisfy vocab size | |
for id, _ in enumerate(range(vocab_size)): | |
dummy_dict.add_symbol("{}".format(id), 1000) | |
return dummy_dict | |
def get_dummy_task_and_parser(): | |
""" | |
to build a fariseq model, we need some dummy parse and task. This function | |
is used to create dummy task and parser to faciliate model/criterion test | |
Note: we use FbSpeechRecognitionTask as the dummy task. You may want | |
to use other task by providing another function | |
""" | |
parser = argparse.ArgumentParser( | |
description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS | |
) | |
DummyTask.add_args(parser) | |
args = parser.parse_args([]) | |
task = DummyTask.setup_task(args) | |
return task, parser | |
class TestJitLSTMModel(unittest.TestCase): | |
def _test_save_and_load(self, scripted_module): | |
with tempfile.NamedTemporaryFile() as f: | |
scripted_module.save(f.name) | |
torch.jit.load(f.name) | |
def assertTensorEqual(self, t1, t2): | |
t1 = t1[~torch.isnan(t1)] # can cause size mismatch errors if there are NaNs | |
t2 = t2[~torch.isnan(t2)] | |
self.assertEqual(t1.size(), t2.size(), "size mismatch") | |
self.assertEqual(t1.ne(t2).long().sum(), 0) | |
def test_jit_and_export_lstm(self): | |
task, parser = get_dummy_task_and_parser() | |
LSTMModel.add_args(parser) | |
args = parser.parse_args([]) | |
args.criterion = "" | |
model = LSTMModel.build_model(args, task) | |
scripted_model = torch.jit.script(model) | |
self._test_save_and_load(scripted_model) | |
def test_assert_jit_vs_nonjit_(self): | |
task, parser = get_dummy_task_and_parser() | |
LSTMModel.add_args(parser) | |
args = parser.parse_args([]) | |
args.criterion = "" | |
model = LSTMModel.build_model(args, task) | |
model.eval() | |
scripted_model = torch.jit.script(model) | |
scripted_model.eval() | |
idx = len(task.source_dictionary) | |
iter = 100 | |
# Inject random input and check output | |
seq_len_tensor = torch.randint(1, 10, (iter,)) | |
num_samples_tensor = torch.randint(1, 10, (iter,)) | |
for i in range(iter): | |
seq_len = seq_len_tensor[i] | |
num_samples = num_samples_tensor[i] | |
src_token = (torch.randint(0, idx, (num_samples, seq_len)),) | |
src_lengths = torch.randint(1, seq_len + 1, (num_samples,)) | |
src_lengths, _ = torch.sort(src_lengths, descending=True) | |
# Force the first sample to have seq_len | |
src_lengths[0] = seq_len | |
prev_output_token = (torch.randint(0, idx, (num_samples, 1)),) | |
result = model(src_token[0], src_lengths, prev_output_token[0], None) | |
scripted_result = scripted_model( | |
src_token[0], src_lengths, prev_output_token[0], None | |
) | |
self.assertTensorEqual(result[0], scripted_result[0]) | |
self.assertTensorEqual(result[1], scripted_result[1]) | |
if __name__ == "__main__": | |
unittest.main() | |